The last subsystem of the consciousness system discussed by Charles T. Tart after extero-interoception, input processing, memory, subconscious, the processes of evaluation and decision, emotions, space/time and identity is motor output:
Subsystems
Motor Output
The Motor Output subsystem consists of those structures which we physically affect the external world and our own bodies. In terms of conscious awareness, these structures are primarily the skeletal, voluntary musculature. If I take a minute out from writing to pet my cat, I am using my Motor Output subsystem with full awareness. The Motor Output subsystem elements that primarily affect our own bodies are glandular secretions and other internal, biological processes. These latter, involuntary effectors are controllable not directly, but through intermediates. I cannot directly increase the amount of adrenaline in my bloodstream, for example, but if I make myself angry and wave my fists and shout and holler, I will almost certainly increase the amount of adrenaline secreted.
Two kinds of inputs control Motor Output: input from the Evaluation and Decision-Making subsystem, conscious decisions to do or not to do something, and input from a series of controlling signals that bypasses the Evaluation and Decision-Making subsystem. The latter includes reflexes (jumping at a sudden sound, for example), emotional reactions, and direct control of Motor Output from the Subconscious subsystem. Subconscious control in the ordinary d-SoC includes qualities added to otherwise conscious gestures that reflect nonconscious mental processes: you may state, for example, that a certain person does not make you angry, but an observer notices that your fists clench whenever this person is mentioned.
Motor Output operates with almost constant feedback control. By monitoring the environment with the Exteroception subsystem and the body with the Interoception subsystem, you constantly check on the effect of your physical actions and on whether these are desirable and make adjustments accordingly.
Many voluntary movements are quite unconscious in terms of their details. You decide to lift your arm, yet you have little awareness of the individual muscle actions that allow you to do so. In d-ASCs, greatly increased awareness of particular aspects of the Motor Output subsystem are sometimes reported. Greatly decreased awareness has also been reported: actions that are ordinarily subject to conscious awareness, via feedback from the interoceptors, are done with no awareness at all. During my first experience with a psychedelic drug, mescaline, I told my body to walk down to the end of the hall. Then my awareness became completely absorbed in various internal events. After what seemed a very long time, I was surprised to notice that my body had walked down the hall and obligingly stopped at the end, with no conscious participation or awareness on my part. To some extent this occurs in an ordinary d-SoC, especially with well-learned actions, but the effect can be much more striking in a d-ASC. We should distinguish lack of sensory awareness of body actions from awareness of them but without the sense of ego added. The latter also creates a different relationship with motor actions.
Deautomatization of motor actions is another sort of altered awareness of motor output that can occur in a d-ASC. Either you become unusually aware of components of automatized actions normally inaccessible to consciousness or you have deliberately to will each of these component actions to take place because the whole automated action will not occur by itself.
D-ASC related changes in the way the body is experienced via the Exteroception subsystem and in awareness of functioning of the Motor Output subsystem can alter the operating characteristics of voluntary action. You may have to perform a different kind of action internally in order to produce the same kind of voluntary action. Carlos Castaneda gives a striking example of this in a drug-induced d-ASC. His body was completely paralyzed from the "little smoke" in terms of his ordinary way of controlling it. Doing all the things he ordinarily did to move produced zero response. But if he simply willed movement in a certain way, his body responded.
Changes in the awareness of the functioning of the Motor Output subsystem may include feelings of greatly increased strength or skill, or of greatly decreased strength or skill. Often these feelings do not correspond with performance: you may feel exceptionally weak or unsure of your skill, and yet perform in a basically ordinary fashion. Or you may feel exceptionally strong, but show no actual increase in performance. The potential for a true increment in strength in d-ASCs is real, however, because in the ordinary d-SoC you seldom use your musculature to its full strength. Safety mechanisms prevent you from fully exerting yourself and possibly damaging yourself. For example, some muscles are strong enough to break your own bones if they were maximally exerted. In various d-ASCs, especially when strong emotions are involved, these safety mechanisms may be temporarily bypassed, allowing greater strength, at the risk of damage.
In a d-ASC the Subconscious subsystem may control the Motor Output subsystem or parts of it. For example, if a hypnotist suggests to a subject that his arm is moving up and down by itself, the arm will do so and the subject will experience the arm moving by itself, without his conscious volition. If a hypnotist suggests automatic writing, the subject's hand will write complex material, with as much skill as in ordinary writing, without any conscious awareness by the subject of what he is going to write and without any feeling of volitional control over the action. This kind of disassociated motor action can also sometimes occur in the ordinary d-SoC, where it may represent the action of a disassociated d-ASC.
This ends our survey of the main subsystems of states of consciousness. It is only a survey, pointing out the major variations. Much literature already exists from which more specific information about various subsystems can be gleaned, and much research remains to be done to clarify our concepts of particular subsystems. Particularly we need to know exactly how each subsystem changes for each specific d-ASC. So we must know our parts better, although I emphasize again that it is just as important to know how these parts are put into the functioning whole that constitutes a system, a d-SoC.
Two kinds of inputs control Motor Output: input from the Evaluation and Decision-Making subsystem, conscious decisions to do or not to do something, and input from a series of controlling signals that bypasses the Evaluation and Decision-Making subsystem. The latter includes reflexes (jumping at a sudden sound, for example), emotional reactions, and direct control of Motor Output from the Subconscious subsystem. Subconscious control in the ordinary d-SoC includes qualities added to otherwise conscious gestures that reflect nonconscious mental processes: you may state, for example, that a certain person does not make you angry, but an observer notices that your fists clench whenever this person is mentioned.
Motor Output operates with almost constant feedback control. By monitoring the environment with the Exteroception subsystem and the body with the Interoception subsystem, you constantly check on the effect of your physical actions and on whether these are desirable and make adjustments accordingly.
Many voluntary movements are quite unconscious in terms of their details. You decide to lift your arm, yet you have little awareness of the individual muscle actions that allow you to do so. In d-ASCs, greatly increased awareness of particular aspects of the Motor Output subsystem are sometimes reported. Greatly decreased awareness has also been reported: actions that are ordinarily subject to conscious awareness, via feedback from the interoceptors, are done with no awareness at all. During my first experience with a psychedelic drug, mescaline, I told my body to walk down to the end of the hall. Then my awareness became completely absorbed in various internal events. After what seemed a very long time, I was surprised to notice that my body had walked down the hall and obligingly stopped at the end, with no conscious participation or awareness on my part. To some extent this occurs in an ordinary d-SoC, especially with well-learned actions, but the effect can be much more striking in a d-ASC. We should distinguish lack of sensory awareness of body actions from awareness of them but without the sense of ego added. The latter also creates a different relationship with motor actions.
Deautomatization of motor actions is another sort of altered awareness of motor output that can occur in a d-ASC. Either you become unusually aware of components of automatized actions normally inaccessible to consciousness or you have deliberately to will each of these component actions to take place because the whole automated action will not occur by itself.
D-ASC related changes in the way the body is experienced via the Exteroception subsystem and in awareness of functioning of the Motor Output subsystem can alter the operating characteristics of voluntary action. You may have to perform a different kind of action internally in order to produce the same kind of voluntary action. Carlos Castaneda gives a striking example of this in a drug-induced d-ASC. His body was completely paralyzed from the "little smoke" in terms of his ordinary way of controlling it. Doing all the things he ordinarily did to move produced zero response. But if he simply willed movement in a certain way, his body responded.
Changes in the awareness of the functioning of the Motor Output subsystem may include feelings of greatly increased strength or skill, or of greatly decreased strength or skill. Often these feelings do not correspond with performance: you may feel exceptionally weak or unsure of your skill, and yet perform in a basically ordinary fashion. Or you may feel exceptionally strong, but show no actual increase in performance. The potential for a true increment in strength in d-ASCs is real, however, because in the ordinary d-SoC you seldom use your musculature to its full strength. Safety mechanisms prevent you from fully exerting yourself and possibly damaging yourself. For example, some muscles are strong enough to break your own bones if they were maximally exerted. In various d-ASCs, especially when strong emotions are involved, these safety mechanisms may be temporarily bypassed, allowing greater strength, at the risk of damage.
In a d-ASC the Subconscious subsystem may control the Motor Output subsystem or parts of it. For example, if a hypnotist suggests to a subject that his arm is moving up and down by itself, the arm will do so and the subject will experience the arm moving by itself, without his conscious volition. If a hypnotist suggests automatic writing, the subject's hand will write complex material, with as much skill as in ordinary writing, without any conscious awareness by the subject of what he is going to write and without any feeling of volitional control over the action. This kind of disassociated motor action can also sometimes occur in the ordinary d-SoC, where it may represent the action of a disassociated d-ASC.
This ends our survey of the main subsystems of states of consciousness. It is only a survey, pointing out the major variations. Much literature already exists from which more specific information about various subsystems can be gleaned, and much research remains to be done to clarify our concepts of particular subsystems. Particularly we need to know exactly how each subsystem changes for each specific d-ASC. So we must know our parts better, although I emphasize again that it is just as important to know how these parts are put into the functioning whole that constitutes a system, a d-SoC.
Tao subsystems - VIII
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.