Wednesday, April 24, 2013

meta-Tao borders and pores

Artists Without Borders
The next metapattern introduced by Tyler Volk and Jeff Bloom are borders and pores, complementary structures which on one side separe and divide, on the other allow contact and exchange; together they control and regulate the flow and exchange of materials, energy or information:
Coloured SEM image of an open stoma on a leaf


Borders involve the concepts of protection, separation of inside from outside, containment, and barrier or obstacle. With pores, borders regulate the flow and exchange of materials, energy, or information. Small pores heighten regulation and reduce flow, while larger pores decrease regulation and increase flow. Borders can be visible entities, fuzzy, or invisible. Physical borders tend to be built of sheets of repeating parts (clonons).


  • In science: cell membranes and osmosis, skin and pores, eyes, ears, nose, mouth, stomata, the Earth’s crust and volcanoes, clouds with fuzzy borders, atmosphere, ecotones, edge of a pond, etc.
  • In architecture and design: walls with doors and windows, roof and skylight, etc.
  • In art: depicted forms, frame with canvas as opening pore to another world, pottery bowl or vase with circular pore, etc.
  • In social sciences: personal space, psychological and social obstacles, problem as border with paths to solutions as pores, physical space divisions and openings, social barriers, borders between social strata, racism and other biases as barriers, propaganda as a barrier to truth, borders between countries with border crossings and immigration pores, etc.
  • In other senses: borders and openings in feng shui, borders between properties, airline security, etc.
Red Fort, Agra


The Pattern Underground

Tuesday, April 23, 2013

Tao in the raft

Jean-Louis Théodore Géricault, Le Radeau de la Méduse, 1818-19, musée du Louvre
Goscinny-Uderzo, Asterix
Sergio Michilini, La zattera della medusa italiana, 1981
Ju Duoqi, The Vegetable Museum - The Raft of the Lotus Roots, 2008
Joel Peter Witkin, The raft of George W. Bush, 2006

the Tao Book: inside information - I


THIS BOOK explores an unrecognized but mighty taboo—our tacit conspiracy to ignore who, or what, we really are. Briefly, the thesis is that the prevalent sensation of oneself as a separate ego enclosed in a bag of skin is a hallucination which accords neither with Western science nor with the experimental philosophy-religions of the East—in particular the central and germinal Vedanta philosophy of Hinduism. This hallucination underlies the misuse of technology for the violent subjugation of man's natural environment and, consequently, its eventual destruction.
We are therefore in urgent need of a sense of our own existence which is in accord with the physical facts and which overcomes our feeling of alienation from the universe. For this purpose I have drawn on the insights of Vedanta, stating them, however, in a completely modern and Western style—so that this volume makes no attempt to be a textbook on or introduction to Vedanta in the ordinary sense. It is rather a cross-fertilization of Western science with an Eastern intuition.

Sausalito, California                                                                                                  ALAN WATTS
January, 1966


JUST WHAT should a young man or woman know in order to be "in the know"? Is there, in other words, some inside information, some special taboo, some real lowdown on life and existence that most parents and teachers either don't know or won't tell?
In Japan it was once customary to give young people about to be married a "pillow book." This was a small volume of wood-block prints, often colored, showing all the details of sexual intercourse. It wasn't just that, as the Chinese say, "one picture is worth ten thousand words." It was also that it spared parents the embarrassment of explaining these intimate matters face-to-face. But today in the West you can get such information at any newsstand. Sex is no longer a serious taboo. Teenagers sometimes know more about it than adults.
But if sex is no longer the big taboo, what is? For there is always something taboo, something repressed, unadmitted, or just glimpsed quickly out of the corner of one's eye because a direct look is too unsettling. Taboos lie within taboos, like the skins of an onion. What, then, would be The Book which fathers might slip to their sons and mothers to their daughters, without ever admitting it openly?
In some circles there is a strong taboo on religion, even in circles where people go to church or read the Bible. Here, religion is one's own private business. It is bad form or uncool to talk or argue about it, and very bad indeed to make a big show of piety. Yet when you get in on the inside of almost any standard-brand religion, you wonder what on earth the hush was about. Surely The Book I have in mind wouldn't be the Bible, "the Good Book"—that fascinating anthology of ancient wisdom, history, and fable which has for so long been treated as a Sacred Cow that it might well be locked up for a century or two so that men could hear it again with clean ears. There are indeed secrets in the Bible, and some very subversive ones, but they are all so muffled up in complications, in archaic symbols and ways of thinking, that Christianity has become incredibly difficult to explain to a modern person. That is, unless you are content to water it down to being good and trying to imitate Jesus, but no one ever explains just how to do that. To do it you must have a particular power from God known as "grace," but all that we really know about grace is that some get it, and some don't.
The standard-brand religions, whether Jewish, Christian, Mohammedan, Hindu, or Buddhist, are—as now practiced—like exhausted mines: very hard to dig. With some exceptions not too easily found, their ideas about man and the world, their imagery, their rites, and their notions of the good life don't seem to fit in with the universe as we now know it, or with a human world that is changing so rapidly that much of what one learns in school is already obsolete on graduation day.
The Book I am thinking about would not be religious in the usual sense, but it would have to discuss many things with which religions have been concerned—the universe and man's place in it, the mysterious center of experience which we call "I myself," the problems of life and love, pain and death, and the whole question of whether existence has meaning in any sense of the word. For there is a growing apprehension that existence is a rat-race in a trap: living organisms, including people, are merely tubes which put things in at one end and let them out at the other, which both keeps them doing it and in the long run wears them out. So to keep the farce going, the tubes find ways of making new tubes, which also put things in at one end and let them out at the other. At the input end they even develop ganglia of nerves called brains, with eyes and ears, so that they can more easily scrounge around for things to swallow. As and when they get enough to eat, they use up their surplus energy by wiggling in complicated patterns, making all sorts of noises by blowing air in and out of the input hole, and gathering together in groups to fight with other groups. In time, the tubes grow such an abundance of attached appliances that they are hardly recognizable as mere tubes, and they manage to do this in a staggering variety of forms. There is a vague rule not to eat tubes of your own form, but in general there is serious competition as to who is going to be the top type of tube. All this seems marvelously futile, and yet, when you begin to think about it, it begins to be more marvelous than futile. Indeed, it seems extremely odd.
It is a special kind of enlightenment to have this feeling that the usual, the way things normally are, is odd—uncanny and highly improbable. G. K. Chesterton once said that it is one thing to be amazed at a gorgon or a griffin, creatures which do not exist; but it is quite another and much higher thing to be amazed at a rhinoceros or a giraffe, creatures which do exist and look as if they don't. This feeling of universal oddity includes a basic and intense wondering about the sense of things. Why, of all possible worlds, this colossal and apparently unnecessary multitude of galaxies in a mysteriously curved space-time continuum, these myriads of differing tube-species playing frantic games of one-upmanship, these numberless ways of "doing it" from the elegant architecture of the snow crystal or the diatom to the startling magnificence of the lyrebird or the peacock?
Ludwig Wittgenstein and other modern "logical" philosophers have tried to suppress this question by saying that it has no meaning and ought not to be asked. Most philosophical problems are to be solved by getting rid of them, by coming to the point where you see that such questions as "Why this universe?" are a kind of intellectual neurosis, a misuse of words in that the question sounds sensible but is actually as meaningless as asking "Where is this universe?" when the only things that are anywhere must be somewhere inside the universe. The task of philosophy is to cure people of such nonsense. Wittgenstein, as we shall see, had a point there. Nevertheless, wonder is not a disease. Wonder, and its expression in poetry and the arts, are among the most important things which seem to distinguish men from other animals, and intelligent and sensitive people from morons.
Is there, then, some kind of a lowdown on this astounding scheme of things, something that never really gets out through the usual channels for the Answer—the historic religions and philosophies? There is. It has been said again and again, but in such a fashion that we, today, in this particular civilization do not hear it. We do not realize that it is utterly subversive, not so much in the political and moral sense, as in that it turns our ordinary view of things, our common sense, inside out and upside down. It may of course have political and moral consequences, but as yet we have no clear idea of what they may be. Hitherto this inner revolution of the mind has been confined to rather isolated individuals; it has never, to my knowledge, been widely characteristic of communities or societies. It has often been thought too dangerous for that. Hence the taboo.
But the world is in an extremely dangerous situation, and serious diseases often require the risk of a dangerous cure—like the Pasteur serum for rabies. It is not that we may simply blow up the planet with nuclear bombs, strangle ourselves with overpopulation, destroy our natural resources through poor conservation, or ruin the soil and its products with improperly understood chemicals and pesticides. Beyond all these is the possibility that civilization may be a huge technological success, but through methods that most people will find baffling, frightening, and disorienting—because, for one reason alone, the methods will keep changing. It may be like playing a game in which the rules are constantly changed without ever being made clear—a game from which one cannot withdraw without suicide, and in which one can never return to an older form of the game.
But the problem of man and technics is almost always stated in the wrong way. It is said that humanity has evolved one-sidedly, growing in technical power without any comparable growth in moral integrity, or, as some would prefer to say, without comparable progress in education and rational thinking. Yet the problem is more basic. The root of the matter is the way in which we feel and conceive ourselves as human beings, our sensation of being alive, of individual existence and identity. We suffer from a hallucination, from a false and distorted sensation of our own existence as living organisms. Most of us have the sensation that "I myself" is a separate center of feeling and action, living inside and bounded by the physical body—a center which "confronts" an "external" world of people and things, making contact through the senses with a universe both alien and strange. Everyday figures of speech reflect this illusion. "I came into this world." "You must face reality." "The conquest of nature."

Monday, April 22, 2013

a day for Tao

Tao subsystems - IV


The Subconscious is usually defined as representing mental processes or phenomena that occur outside conscious awareness and that ordinarily cannot become conscious. They are part of the mind, but not conscious. How do we know they exist if we cannot be consciously aware of them? We infer their existence we observe certain aspects of our own and others' functioning that cannot be adequately explained on the basis of our or their immediately available conscious experiences, and we infer that forces or phenomena outside consciousness are affecting it—from behind the scenes, as it were. Thus, from the viewpoint of our ordinary d-SoC, the Subconscious subsystem is a hypothesis, an inferential construct needed to explain conscious behavior. A psychoanalyst, for example, observes that a patient becomes pale and trembles every time he speaks of his brother, yet when questioned about him says they have a good relationship. The psychoanalyst hypothesizes that in the patient's Subconscious there is a good deal of unresolved anxiety and anger toward the brother.
The emphasis here is that subconscious processes occur outside awareness from the viewpoint of the ordinary d-SoC. What is subconscious from the reference point of the ordinary d-SoC may become conscious in d-ASCs.
I deliberately use the term subconscious rather than the more commonly employed unconscious to avoid the strictly psychoanalytic connotations of unconscious mind. The classical, Freudian unconscious (the sexual and aggressive instincts and their sublimations and repressions) is included in the Subconscious subsystem described here. The Subconscious also include creative processes, the kinds of things we vaguely call intuition and hunches, tender and loving feelings that may be just as inhibited in their expression as sexual and aggressive ones, and other factors influencing conscious behavior. All these things are mysterious and poorly understood by our conscious minds.
Also included as subconscious processes for many of us are the kinds of thinking that are now called right hemisphere modalities of thinking. The type of thinking associated with the right hemisphere seems holistic rather than analytic, atemporal rather than sequential in time, more concerned with patterns than with details. But for many of us in whom intellectual, sequential, rational development has been overstressed and this other mode inhibited or ignored, this right hemisphere thinking is largely subconscious.
D-ASCs may alter the relationship between what is conscious and what is subconscious.

Figure 8-2 expresses this idea. In the ordinary d-SoC, it is convenient to think of the conscious part of the mind as the part that is in the full focus of consciousness or is readily available to such consciousness, to think of a preconscious part that is ordinarily not in the full focus of consciousness but can be made so with little effort, and a Subconscious subsystem that is ordinarily completely cut off from conscious awareness even though special techniques, such as psychoanalytic ones, give inferential information about it. I have followed the general psychoanalytic conventions (1) of showing the Subconscious as the largest part of the mind, to indicate that the largest portion of experience and behavior is probably governed by subconscious forces we are not aware of, and (2) of showing the conscious and preconscious parts of the mind as about equal in size. The barrier between conscious and preconscious has many "holes" in it while the Subconscious is relatively inaccessible. For example, if you dislike someone and I ask you to think about why you dislike him, a little thought may show that the reasons behind your immediate dislike result from a synthesis of the person's appearance and some unpleasant experiences you previously have had with people of that appearance. These reasons might actually be based on deeply buried subconscious feelings that all people of the same sex are rivals for mother's affection, things you ordinarily cannot become aware of without special therapeutic techniques.
Preconscious and subconscious contents may be more or less readily available in a d-ASC, depending on the d-ASC. In d-ASC 1 in Figure 8-2, more other mind and preconscious material are directly in consciousness and less are in the Subconscious subsystem. This, incidentally, is one of the danger of experiencing a d-ASC: a person may be overwhelmed by emotionally charged material, normally subconscious, that he is not ready to handle. This can happen with marijuana intoxication or other psychedelic-drug-induced states, as well as with meditative states or hypnosis. In all these states things that are ordinarily preconscious or subconscious may become conscious.
D-ASC 2 illustrates the kind of state in which things that are ordinarily conscious may become preconscious or subconscious. Certain drug-induced states or other d-ASCs that tend toward stupor might fit in this category, where consciousness feels quite restricted and dull, even though the subject's behavior suggests that previously conscious material is still affecting him. The alcoholic blackout state is interesting in this context, for the person seems to behave "normally" in many ways, indicating that much ordinarily conscious knowledge is still present, even though this is a blackout in terms of later recall.
D-ASC 3 represents various d-ASCs in which much subconscious material might become preconscious: it will not necessarily well up by itself, but it is much more readily available than ordinarily. Thus the potential for exploring the mind is greater, but effort must still be exerted. Marijuana intoxication can do this.
In terms of overall system functioning, I have shown a direct information flow arrow from Input-Processing to the Subconscious, and a feedback control arrow from the Subconscious to Input-Processing. Processed input information may reach the Subconscious and have effects even when it does not reach awareness. To use again the example of scanning the crowd, even though you are consciously looking for your friend's face, the impact of another face may trigger subconscious processes because of resemblance to someone emotionally meaningful to you, and may produce later effects on you even though you were not consciously aware of seeing that particular person.
The feedback control arrow from Subconscious to Input-Processing indicates that the Subconscious subsystem may have a major control over perception. Our likes and dislikes, needs and fears, can affect what we see. This kind of selectivity in perception is discussed in relation to the Input-Processing subsystem. I bring it up here to indicate a distinction between relatively permanent, learned selectivities of perception that are inherent in Input-Processing itself, such as ability to recognize words, and selectivities that are more dependent on the current emotional state of the Subconscious subsystem, and so may show more variation from time to time. For example, we have many permanent learnings that are part of Input-Processing and that enable us to distinguish men from women at a glance. But we have sexual needs that peak from time to time, and these may be partially or wholly in the Subconscious subsystem because of cultural repressive pressures. As these repressed needs vary, they affect Input-Processing and change our current perceptions of people of the opposite sex: they can become much more attractive when we are aroused. We should also briefly note the possibility of the activation of archetypes from the Collective Unconscious during d-ASCs. The terms archetypes and Collective Unconscious are used in Carl Jung's sense. The Collective Unconscious refers to a large body of biologically inherited psychological structures,, most of which remains latent human potentials. Particular structures are archetypes, innate patterns that can emerge and dominate consciousness because of the high psychic energy residing in them if the right stimuli for activation occur. Myths of heroic quests, demons, gods, energies, God, Christ, are held by Jung to be particular archetypes from the Collective Unconscious, which express themselves at various times in human history. It would take far too much space here to give them adequate consideration; the interested reader should refer to the collected works of Carl Jung. It should be noted, however, that some d-ASCs frequently facilitate the emergence of archetypes.

Tao subsystems - III

Thursday, April 18, 2013

atomic suspended Tao

Suspended space: Salvador Dalí, Leda Atomica, (1949)
Dalí Theatre and Museum, Figueres
Dali himself described “Leda Atomica” as a picture created “in accordance with the modern nothing touches’ theory of intra – atomic Physics”. “Leda does not touch the swan; Leda does not touch the pedestal; the pedestal does not touch the base; the base does not touch the sea; the sea does not touch the shore . . .” he explains, presenting a suspended world similar to the one of the atomic scale. The design of the composition is purely mathematical and carefully prepared as is revealed in a 1947 study of the artist. Leda (portrayed as his wife Gala) and the swan are inscribed in a regular pentagon, closely connected to the golden ratio. Dali conceived the design influenced by the Romanian polymath Prince Matila Costiesco Ghyka. The mathematical formula for the length of the pentagon’s side appears in the lower right side of the study.

The peacock's tail

Essays on Mathematics and Culture

the Tao of Mirdad

There are millions of books in the world, but The Book of Mirdad stands out far above any other book in existence.
It is unfortunate that very few people are acquainted with The Book of Mirdad for the simple reason that it is not a religious scripture. It is a parable, a fiction, but containing oceanic truth.
It is a small book, but the man who gave birth to this book... and mind my words, I am not saying "the man who wrote this book." Nobody wrote this book. I am saying the man who gave birth to this book - he was an unknown, a nobody. And because he was not a novelist, he never wrote again; just that single book contains his whole experience.
The name of the man was Mikhail Naimy.
It is an extraordinary book in the sense that you can read it and miss it completely, because the meaning of the book is not in the words of the book. The meaning of the book is running side by side in silence between the words, between the lines, in the gaps.
If you are in a state of meditativeness - if you are not only reading a fiction but you are encountering the whole religious experience of a great human being, absorbing it; not intellectually understanding but existentially drinking it - the words are there but they become secondary. Something else becomes primary: the silence that those words create, the music that those words create. The words affect your mind, and the music goes directly to your heart.
And it is a book to be read by the heart, not by the mind. It is a book not to be understood, but experienced. It is something phenomenal.
Millions of people have tried to write books so that they can express the inexpressible, but they have utterly failed. I know only one book, The Book of Mirdad, which has not failed; and if you cannot get to the very essence of it, it will be your failure, not his.
He has created a perfect device of words, parables, situations. If you allow it, the book becomes alive and something starts happening to your being. And naturally, because you have never come to such a state, you are puzzled about what it is - sadness? blissfulness? There are tears, but those tears can be either of sadness or they can be of immense joy.
You have come to a point where you have never been before, so naturally you cannot categorize it. You cannot put a label on it according to your old experiences. But the name does not mean anything. What matters is that you have taken a step beyond yourself. You have never been in this space; you have entered into the unknown, and it is so unknown that you don't have the vocabulary even to give it a name.
Just see the point: It may look like sadness... because for the first time in your life you will become aware that up to now you have not been alive. Life has happened today.
And it brings a great sadness... you were alive - but knowing this new experience, your whole life becomes so mundane, so meaningless, that it is better to say that it was more death than life. And a sadness arises that, "Why could I not reach this space before?" It is so close - just a step beyond the boundaries of your old mind and the whole sky with all its stars becomes available. You were confined in such a small prison - and nobody was imprisoning you. You were the prisoner and you were the imprisoned. You were the jailer and you were the jailed. Naturally... a sadness, looking to the past.
But looking to the present... a great blissfulness, a peace that passeth understanding, a silence that is not just the opposite of sound... a silence which is absence of sound, not the opposite of sound. A music without any instruments, a song without any words....
For the first time you start feeling that, "Up to now I have been living in the head; and only this moment the doors of my heart are open."
There is an old Chinese story. Because of the story a proverb has come into existence - that when the musician becomes perfect, he burns his instruments; they become not only useless, they become a nuisance because they only create noise. Only between the noise are there a few moments of music - why not have it all?
And when the archer becomes a perfect master, he drops his bow and his arrows and forgets all about it. A strange proverb - because ordinarily we think that when we become perfect our instruments will also attain a perfection with us; their working will also become perfect.

Wednesday, April 17, 2013

planetary Tao scalability

Moon view from Earth - Ron Miller
Mercury instead of Moon - Ron Miller
Venus instead of Moon - Ron Miller
Mars instead of Moon - Ron Miller
Uranus instead of Moon - Ron Miller
Neptune instead of Moon - Ron Miller
Saturn instead of Moon - Ron Miller
Jupiter instead of Moon - Ron Miller

Tao stellar scalability

a legacy for Tao - V

Angels Fear Revisited:
Gregory Bateson’s Cybernetic Theory of Mind
Applied to Religion-Science Debates

Mary Catherine Bateson

The Intelligent Design Debate
We are still troubled by the invocation of deity to explain living systems. Most natural scientists devoutly try to avoid teleological language to this day. In the United States, however, we are seeing another of the waves of religious revival that have occurred in American history, which is shaping American policy in disturbing ways. Much of it looks absurd from Europe: absurd that the Americans were preoccupied with the sex life of a president and even more absurd that we are now debating yet again whether evolution should be taught in schools, or if mentioned whether it should be treated as scientific knowledge – that is to say, what metamessage children should be given about the nature of what they are being taught, including whether it should be presented as one of several alternatives.

President Bush, earlier this summer, said in a press conference that he believes Intelligent Design should be taught in all schools. I.D. is not quite Creationism, but is very similar, because of the suggestion that the complexity and apparent purposefulness of organs such as the eye can only be explained by postulating a designer shaping his creations toward particular ends.
Intelligent Design, of course, takes off from William Paley (1794), whom Darwin and, two generations later, Gregory read at Cambridge. Paley argued that just as, when you look at a watch, you can recognize that it is designed and made by someone for a purpose, so too you can look at the natural world and infer the existence of a creator. The advocates of Intelligent Design do not insist that it all happened in seven days and they don’t insist that species don’t change over time and so on, but still they see a need for an outside intelligence. They make an effort to present their ideas with the style and format we associate with science, thereby mislabeling their message, and at the same time try to label the accumulated evidence for evolution as speculative.

Friday, April 12, 2013

Tao representation

H. Kopp-Delaney, Surreal Dimension
The revision of the central notion of representation for cognitive systems starts from considering that these are characterized by their operational closure, wherein to outline where the represented external environment (the world) ends and where the internal processes of the cognitive system, which represent it, begin is hardly to define. Such systems do not operate by representation but instead of representing an independent world they enact a world as a domain of distinctions that is inseparable from the structure embodied by the cognitive system:

Steps to a Middle Way

The Cartesian Anxiety

Representation Revisited
In the discussion of cognitivism we distinguished between two senses of representation, which we now need to recall. On the one hand, there is the relatively uncontroversial notion of representation as construal: cognition always consists in construing or representing the world a certain way. On the other hand, there is the much stronger notion that this feature of cognition is to be explained by the hypothesis that a system acts on the basis of internal representations. Since it might seem that these two ideas amount to the same thing, we need to refine our distinction somewhat.
We can begin by noting a relatively weak and uncontroversial sense of representation. This sense is purely semantic: It refers to anything that can be interpreted as being about something. This is the sense of representation as construal, since nothing is about something else without construing it as being some way. A map, for example, is about some geographical area; it represents certain features of the terrain and so construes that terrain as being a certain way. Similarly, words on a page represent sentences in a language, which may in tum represent or be about still other things. This sense of representation can be made even more precise. If, for example, our concern happens to be with languages in a more formal setting, we can say that the statements of a language represent their conditions of satisfaction. For example, the statement "snow is white"-taken literally is satisfied if snow is white; the statement "pick up your shoes"again, taken literally - is satisfied if the shoes are picked up by the person being addressed.
This sense of representation is weak because it need not carry any strong epistemological or ontological commitments. Thus it is perfectly acceptable to speak of a map representing the terrain without worrying about such things as how maps get their meaning. It is also perfectly acceptable to think of a statement as representing some set of conditions without making further assumptions about whether language as a whole works this way or whether there really are facts in the world separate from language that can then be re-presented by the sentences of the language. Or we can even talk about experiential representations, such as the image I have of my brother, without making any further assumptions about how this image arose in the first place. In other words, this weak sense of representation is pragmatic; we use it all the time without worry.
The obviousness of such an idea, however, is quickly transformed into a much stronger sense of representation that does carry quite heavy ontological and epistemological commitments. This strong sense arises when we generalize on the basis of the weaker idea to construct a full-fledged theory of how perception, language, or cognition in general must work. The ontological and epistemological commitments are basically twofold: We assume that the world is pregiven, that its features can be specified prior to any cognitive activity. Then to explain the relation between this cognitive activity and a pregiven world, we hypothesize the existence of mental representations inside the cognitive system (whether these be images, symbols, or subsymbolic patterns of activity distributed across a network does not matter for the moment). We then have a full-fledged theory that says (1) the world is pregiven; (2) our cognition is of this world-even if only to a partial extent, and (3) the way in which we cognize this pregiven world is to represent its features and then act on the basis of these representations.
We must, then, return to our earlier metaphor, the idea of a cognitive agent that is parachuted into a pregiven world. This agent will survive only to the extent that it is endowed with a map and learns to act on the basis of this map. In the cognitivist version of this story, the map is an innately specified system of representations-sometimes called a "language of thought" -whereas learning to employ this map is the task of ontogeny.
Many cognitive scientists will object that we have presented a caricature. Are we not presupposing a static conception of representation, one that overlooks the rich detail of the inner structure of a cognitive system and unjustifiably construes a representation as merely a mirror? Is it not well known, for example, that visual perception is considered to be a result of mapping the physical patterns of energy that stimulate the retina into representations of the visual scene, which are then used to make inferences and eventually to produce a perceptual judgment? Perception is seen as an active process of hypothesis formation, not as the simple mirroring of a pregiven environment.
This objection, though somewhat fair, misses the point. Our point is not to caricature a sophisticated research program but simply to render explicit some tacit epistemological assumptions in as clear a fashion as possible. Thus although everyone agrees that representation is a complex process, it is nonetheless conceived to be one of recovering or reconstructing extrinsic, independent environmental features. Thus in vision research, for example, one speaks of "recovering shape from shading" or "color from brightness." Here the latter features are considered to be extrinsic properties of the environment that provide the information needed to recover "higher-order" properties of the visual scene, such as shape and color. The basic idea of a world with pregiven features remains.
The complaint that we have presented a caricature would, however, be justified were we not to acknowledge the subtlety and sophistication of cognitive realism in relation to the classical opposition between realism and idealism in philosophy. In the hands of cognitive realism, the notion of representation does undergo something of a mutation. The power of this mutation is that it seems to offer a way out of the classical opposition between realism and idealism.
This opposition is based in the traditional notion of representation as a "veil of ideas" that stands between us and the world. On the one hand, the realist naturally thinks that there is a distinction between our ideas or concepts and that which they represent, namely, the world. The ultimate court of appeal for judging the validity of our representations is this independent world. Of course, each of our representations must cohere with many others, but the point of such internal features is to increase the probability that globally our representations will have some measure of correspondence or degree of fit with an outer and independent world.
The idealist, on the other hand, quickly points out that we have no access to such an independent world except through our representations. We cannot stand outside of ourselves to behold the degree of fit that our representations might have with the world. In fact, we simply have no idea of what the outside world is except that it is the presumed object of our representations. Taking this point to the extreme, the idealist argues that the very idea of a world independent of representations is itself only another of our representations – a second-order or metarepresentation. Our sense of an outer ground thus slips away, and we are left grasping for our internal representations, as if these could provide a sure and stable reference point.
At first sight, contemporary cognitive science seems to offer a way out of this traditional philosophical impasse. Largely because of cognitive science, philosophical discussion has shifted from concern with a priori representations (representations that might provide some noncontingent foundation for our knowledge of the world) to concern with a posteriori representations (representations whose contents are ultimately derived from causal interactions with the environment). This naturalized conception of representation does not invite the skeptical questions that motivate traditional epistemology. In fact, to shift one's concern to organism-environment relations in this way is largely to abandon the task of traditional a priori epistemology in favor of the naturalized projects of psychology and cognitive science. By taking up such a naturalized stance, cognitive science avoids the antinomies that lurk in transcendental or metaphysical realism, without embracing the solipsism or subjectivism that constantly threatens idealism. 'The cognitive scientist is thus able to remain a staunch realist about the empirical world while making the details of mind and cognition the subject of his investigations.
Cognitive science thus seems to provide a way of talking about representation without being burdened by the traditional philosophical image of the mind as a mirror of nature. But this appearance is misleading. It is true, as Richard Rorty remarks, that there is no way to raise the traditional skeptical questions of epistemology in cognitive science. Global skepticism about the possibility of cognition or knowledge is simply not to the point in the practice of science. But it does not follow, as Rorty seems to think, that the current naturalized conception of representation has nothing to do with the traditional image of the mind as a mirror of nature. On the contrary, a crucial feature of this image remains alive in contemporary cognitive science - the idea of a world or environment with extrinsic, pregiven features that are recovered through a process of representation. In some ways cognitivism is the strongest statement yet of the representational view of the mind inaugurated by Descartes and Locke. Indeed, Jerry Fodor, one of cognitivism's leading and most eloquent exponents, goes so far as to say that the only respect in which cognitivism is a major advance over eighteenth- and nineteenth-century representationism is in its use of the computer as a model of mind.
As we have seen, however, cognitivism is only one variety of cognitive realism. In both the emergence and society of mind approaches (and in the schools of basic elements analysis for the experiential pole of our investigation), the notion of representation becomes more and more problematical. We did not explicitly question this notion in our discussion of the varieties of cognitive realism, but if we look back on our journey, we can see that we have slowly drifted away from the idea of mind as an input-output device that processes information. The role of the environment has quietly moved from being the preeminent reference point to receding more and more into the background, while the idea of mind as an emergent and autonomous network of relationships has gained a central place. It is time, then, to raise the question, What is it about such networks, if anything, that is representational?
To make this question somewhat more accessible, consider once again Minsky's discussion toward the end of Society of Mind. There he writes, "Whenever we speak about a mind, we're speaking of the processes .that carry our brains from state to state ... concerns about minds are really concerns with relationships between states - and this has virtually nothing to do with the natures of the states themselves." How, then, are we to understand these relationships? What is it about them that makes them mindlike?
The answer that is usually given to this question is, of course, that these relationships must be seen as embodying or supporting representations of the environment. Notice, however, that if we claim that the function of these processes is to represent an independent environment, then we are committed to construing these processes as belonging to the class of systems that are driven from the outside, that are defined in terms of external mechanisms of control (a hetero-nomous system). Thus we will consider information to be a prespecified quantity, one that exists independently in the world and can act as the input to a cognitive system. This input provides the initial premises upon which the system computes a behavior-the output. But how are we to specify inputs and outputs for highly cooperative, self-organizing systems such as brains? There is, of course, a back-and-forth flow of energy, but where does information end and behavior begin? Minsky puts his finger on the problem, and his remarks are worth quoting at length:
Why are processes so hard to classify? In earlier times, we could usually judge machines and processes by how they transformed raw materials into finished products. But it makes no sense to speak of brains as though they manufacture thoughts the way factories make cars. The difference is that brains use processes that change themselves-and this means we cannot separate such processes from the products they produce. In particular, brains make memories, which change the ways we'll subsequently think. The principal activities of brains are making changes in themselves. Because the whole idea of self-modifying processes is new to our experience, we cannot yet trust our commonsense judgement about such matters.
What is remarkable about this passage is the absence of any notion of representation. Minsky does not say that the principal activity of brains is to represent the external world; he says that it is to make continuous self-modifications. What has happened to the notion of representation?
In fact, an important and pervasive shift is beginning to take place in cognitive science under the very influence of its own research. This shift requires that we move away from the idea of the world as independent and extrinsic to the idea of a world as inseparable from the structure of these processes of self-modification. This change in stance does not express a mere philosophical preference; it reflects the necessity of understanding cognitive systems not on the basis of their input and output relationships but by their operational closure.
A system that has operational closure is one in which the results of its processes are those processes themselves. The notion of operational closure is thus a way of specifying classes of processes that, in their very operation, tum back upon themselves to form autonomous networks. Such networks do not fall into the class of systems defined by external mechanisms of control (heteronomy) but rather into the class of systems defined by internal mechanisms of self-organization (autonomy). The key point is that such systems do not operate by representation. Instead of representing an independent world, they enact a world as a domain of distinctions that is inseparable from the structure embodied by the cognitive system.
We wish to evoke the point that when we begin to take such a conception of mind seriously, we must call into question the idea that the world is pregiven and that cognition is representation. In cognitive science, this means that we must call into question the idea that information exists ready-made in the world and that it is extracted by a cognitive system, as the cognitivist notion of an informavore vividly implies.
But before we go any further, we need to ask ourselves why the idea of a world with pregiven features or ready-made information seems so unquestionable. Why are we unable to imagine giving up this idea without falling into some sort of subjectivism, idealism, or cognitive nihilism? What is the source of this apparent dilemma? We must examine directly the feeling that arises when we sense that we can no longer trust the world as a fixed and stable reference point.

Thursday, April 11, 2013

meta-Tao holons

The next metapattern discussed by Tyler Volk and Jeff Bloom are holons, a term intruced by Arthur Koestler in The Ghost in the Machine of 1967, and later in Janus: A Summing Up of 1978. In the original definition of Koestler:
1. The holon

1.1 The organism in its structural aspect is not an aggregation of elementary parts, and in its functional aspects not a chain of elementary units of behaviour.
1.2 The organism is to be regarded as a multi-levelled hierarchy of semi-autonomous sub-wholes, branching into sub-wholes of a lower order, and so on. Sub-wholes on any level of the hierarchy are referred to as holons.
1.3 Parts and wholes in an absolute sense do not exist in the domains of life. The concept of the holon is intended to reconcile the atomistic and holistic approaches.
1.4 Biological holons are self-regulating open systems which display both the autonomous properties of wholes and the dependent properties of parts. This dichotomy is present on every level of every type of hierarchic organization, and is referred to as the "Janus phenomenon".
1.5 More generally, the term "holon" may be applied to any stable biological or social sub-whole which displays rule-governed behaviour and/or structural Gestalt-constancy. Thus organelles and homologous organs are evolutionary holons; morphogenetic fields are ontogenetic holons; the ethologist's "fixed action-patterns" and the sub-routines of acquired skills are behavioural holons; phonemes, morphemes, words, phrases are linguistic holons; individuals, families, tribes, nations are social holons.
Holons are therefore - like clonons - intrinsic parts, composed of other subsystems - generally other holons -, of a holarchy of a complex system, at the same time parts (components) and wholes (levels) of the system. They differ from clonons since functionally and structurally distinguishable among them. The typical example are atoms, distinct holons made by three fundamental types (protons, neutrons ed electrons) of clonons particles. Another example from the point of view of organised structures are holons levels which progressively lead from the individual level to the global one:


Holon, as mentioned previously, refers to a whole, which is often comprised of clonon parts or sets of clonon parts. Holons themselves can become clonons of even greater wholes. The idea of holons (in contrast to indistinguishable clonons) is that holons are functionally and structurally distinct parts on the level of a holarchy. Holons are like organs, on different scales of wholes. Thus the body’s holons are heart, lungs, brain, and so forth, which themselves are composed of many clonons, the relatively indistinguishable heart cells, liver cells, and so forth.


  • In science: a planet, a solar system (made of holons-planets that become clonons of the solar system), an atom is a holon of three fundamental types of clonon particles, atoms become clonons of larger holon molecules, etc.
  • In architecture and design: buildings, a community, etc.
  • In art: subjects, figures formed from points or strokes, a sculpture, etc
  • In social sciences: a concept, a community or society, an action holon of component clonon actions, a family, a class of students, etc.
  • In other senses: a wall or fence, an archway made of stone clonons, a gang or clique, etc.


The Pattern Underground