Friday, March 29, 2013

the Places of Tao: Concordia Circle

Concordia Circle (about 4800 m.) is the area of the confluence of the Baltoro and Godwin-Austen glaciers, in the heart of Karakoram range, Pakistan, and the obligatory point of passage for expeditions in the area for over a century. Around there's an impressive number of peaks among the most beautiful and relevant of the world, including four eight-thousanders and a large number of 7000s and 6000s.
Panoramic view from Concordia.
K2 south face view from Concordia.
K2 and Broad Peak view from Concordia.
MuztaghTower view from Concordia.
Concordia view toward the Gasherbrum group.

Thursday, March 28, 2013

Tao subsystems - II

After discussing exteroception and interoception Tart continues on the description of the subsystems which form consciousness, going on with the processing of the input produced via the external world (exteroception) and via the body (interoception):


Input Processing

Before reaching awareness, all input data, whether interoceptive or exteroceptive, normally goes through various degrees of processing. The Input-Processing subsystem consists of a complex, interlocking series of totally automatic processes that compares incoming data against previously learned material stored in memory, rejects much of the data as irrelevant, selects some of them as important enough to deserve further processing, transforms and abstracts these important data, and passes this abstraction along to awareness. Thus, a major function of Input-Processing is rejection. At any given instant, you are generally bombarded by an enormous quantity of sensory data of all sorts. Most of the data is not important in terms of defined needs, such as your biological survival. Since your ability to handle information and awareness is limited, you would be overwhelmed if all this mass of incoming data came through. Instead, you receive a small abstraction of incoming information that is important by personal and consensus reality standards.
Input-Processing is totally automatic. Look at this thing that is in your hands with the question, "What is it?" in your mind. Immediately you see a book. You did not have the experience of seeing a whitish rectangular object with dark spots on it. You did not further experience these spots as being arranged in lines, and the individual spots as having distinctive characteristics, which you then, by painstaking examination, arranged into words and sentences, and so concluded that this was a book in your hands. No, the recognition of this thing as a book was instantaneous and automatic. To demonstrate how automatic the processing is, look at the book again and try to see it as simply a collection of incoming, assorted stimuli instead of as a book.
Unless you have some unusual abilities, you find it very difficult to see this object as anything but a book.
Numerous psychological studies have focused on the way perception is automated. Many of these studies have mistakenly assumed they were studying the "accuracy" of perception. What they were usually studying was the agreement with consensus reality standards for perceiving things. An immediate, automatic perception of socially defined reality is taken as being "realistic" and as a sign of a "good-observer."
Thus, Input-Processing is a learned behavior, probably the most complex a human being has to acquire. Think of the number of connections among stimuli and the number of responses associated with the various stimuli that an infant must learn before he can be said to "think." the task is staggering. The infant must learn to perceive instantly and automatically all major features of consensus reality as his parents, peers, and teachers do. This means that an immense amount of information must be stored in memory (it does not matter whether it is stored in the Memory subsystem or in a special Input-Processing memory) and be almost instantly available to Input-Processing. Total automation of the process is equated with efficiency: if I have to struggle to identify an object, I feel stupid; but if I recognize it right away, I feel competent and smart.
In relation to enculturation process, we discussed the fact that a child has more options for his consciousness than a teenager or an adult. This is another way of saying that the automatization of Input-Processing and its efficiency become comprehensive with increasing age, until by the time we are adults almost everything in our world is instantly recognized and dealt with "appropriately." An adult sees things almost exclusively in a culturally approved way and makes culturally approved responses. Rigidity increases with age: that is what Timothy Leary meant when he said, "Don't trust anyone over thirty." The statement is overgeneralized, but it does contain an important psychological truth: older people are liable to be less able to see things differently from the way they have always been accustomed to seeing them.
Numerous psychological studies show variation in Input-Processing that are related to differences within consensus reality. An early study of perception, for example, showed that poor children tend to perceive coins as physically larger than rich children do. People with strong religious values tend to pick up words and other stimuli relating to religion more readily than they do those relating to economics, and vice versa. People with neuroses or psychoses tend to be especially sensitive to certain stimuli that trigger their neurotic structures and to distort perception in ways that fit these neurotic structures. Projective tests, in which the subject is shown a relatively ambiguous stimulus like an ink blot and asked to describe what he sees, are a way of investigating the underlying structures of Input-Processing. If he repeatedly sees a murdered baby in several different blots, we might begin to wonder about the way he has dealt with aggression in his life or about his feelings toward his parents.
In terms of the basic concepts of attention/awareness, psychological energy, and structure, Input-Processing represents a large number of structures, each specialized in responding to certain kinds of stimulus patterns. It has a certain amount of psychological energy always available, so that this active set of structures almost always stands between you and your sense. Input-Processing is automatized in the sense that the structures always draw energy of some sort when activated and process information in a relatively fixed way before passing this information on to awareness.
The ubiquity of Input-Processing is a main reason I have elsewhere distinguished consciousness from awareness. Some kind of "pure" awareness may be a basic from which we start, but ordinarily we experience consciousness, awareness as it is vastly modified by the machinery of the mind. Here Input-Processing in effects places a number of structures between us and our sensory input, and even our sensory input comes through the Exteroception and Interoception subsystems, which are themselves structures with characteristics of their own. Other subsystems are also structures that modify or pattern basic awareness into consciousness. The systems diagram presented as Figure 8-1 shows awareness in a distinct place, but it really spreads through the various subsystems and so becomes consciousness.
The main function of Input-Processing, then, is abstraction. This subsystem is rather like a vast organization that keeps track of an industry's progress and problems and, through hierarchical chains, passes on only the most abstracted reports to the president of the company.
Input-Processing also generalizes, gives a familiar abstracted output to unfamiliar situations that are reasonably close to particular perceptions that have been learned. Thus you recognize this object as a book even though you have never seen this particular book before: it is similar enough to other books to have label automatically applied to it. This kind of generalization may be greatly affected by dominated needs and emotions: all apples look alike to a hungry man.
Various aspects of Input-Processing can show extremely large changes in various d-ASCs. There are large quantitative changes, that is, the range of continuous changes in various aspects of Input-Processing may be greater or less than in your ordinary d-SoC. Your ability to focus attention on particular percepts, for example, may be quantitatively greater or quantitatively less in various d-ASCs.
There are also many important qualitative changes that may be experienced as entirely new modes of perception. Some of these may be the activation of latent human potentials. Patterns may be seen in ordinarily ambiguous data, making it obviously meaningful. An important effect of marijuana intoxication, for example, is the ability to look at normally ambiguous material, such as the grain pattern in a sheet of wood, and see it as an actual picture. New shades of color are reported in various d-ASCs, new qualities to sound. We shall reserve judgment for the moment on whether these are veridical with respect to the actual stimulating objects.
Apparently fixed properties of perceptual organization may change in various d-ASCs as Input-Processing changes. Carlos Castaneda for example, describes how Don Juan taught him how to turn into a crow while he was intoxicated with a hallucinogenic plant: an outstanding aspect of this experience was that his visual field from each eye became split, so that he had two quite different fields, just as if his eyes were on separate sides of his head, instead of the usual overlapping, integrated field.
Illusions and hallucinations, frequently reported in d-ASCs, represent important changes in Input-Processing. The conventional definition of illusion is a misinterpretation of a stimulus that is actually there, as, for example, when on entering a dimly lit room you mistake a coat hanging on a rack for a person. Hallucination is conventionally defined as a vision of something that is not there at all, as, for example, when on entering the same dimly lit room you see a person, even though the room is empty. While it is easy to distinguish these two extremes, there is obviously a continuum between them: there is always a certain amount of random neural firing in your retina, a "something" there.
In a more general sense, we must realize that "misperception" and "what is and is not there" are usually defined in terms of consensus reality. We may hope that our consensus reality has a high degree of accuracy with respect to physical reality, but to assume automatically that it does is to be very parochial. If one person hears a given piece of music as exceptionally beautiful in its melody, and another hears it as quite common, was the first person suffering an illusion, or was he really more perceptive? We must be particularly careful in dealing with phenomena from d-ASCs that our consensus reality automatically defines as hallucinatory. Should we have so much faith in the conceptual schemes evolved in our ordinary d-SoC that we automatically dismiss anything that does not fit with them? It is bad science to continue to do so.
An illusion, then, is Input-Processing's interpretation of a stimulus in a way that does not match consensus reality standards. Whether the interpretation added by the illusion is a richer and more accurate perception of a stimulus pattern, or a more distorted and less accurate one, varies with individual cases. In terms of d-ASCs we know about, my general impression is that they possess the property of making our perception more accurate in some ways and less accurate in others. A hallucination is a functioning of Input-Processing whereby stored information is drawn from Memory, worked over by Input-Processing, and passed along to awareness as if it were sensory data. The special label or quality that identifies the source of this vivid image as memory is missing; the quality that identifies it as a sensory stimulus is present. Depending on the type of d-ASC, a hallucination may completely dominate perception, totally wiping out all sensory input coming through Input-Processing, or may be mixed with processed sensory data. The intensity of the hallucination may be as great as that of ordinary sensory information, even greater, or less.
An interesting dimension of variability of Input-Processing in d-ASCs is the degree to which it can be voluntarily altered. The degree of control may be high or low. I recall participating in some experiments on the effect of psilocybin, a psychedelic like LSD, when I was a graduate student. While intoxicated by the drug, I had to sort through a batch of file cards, each of which contained a statement of various possible symptoms. If I was experiencing the symptom, I was to put the card in the "true" pile, if I was not, in the "false" pile. I quickly found that I could make almost every statement true if I so desired, simply by reading it several times. I would pick up a statement like "My palms are sweating green sweat," think that would be an interesting experience, reread the statement several times, and then look at my hands and see that, sure enough, they were sweating green sweat! I could read a statement like "The top of my head is soft" several times and feel the top of my head become soft! Thus, while intoxicated with psilocybin my degree of voluntary control over Input-Processing became very large, sufficiently to create both illusions and hallucinations by merely focusing attention/awareness energy on the desired outcome.
Another type of variation that can occur in Input-Processing in d-ASCs is the partial or total blocking of input from exterocepters or interoceptors. The d-ASC of deep hypnosis is an example. One can suggest to a talented, deeply hypnotized subject that he is blind, that he cannot feel pain, that he cannot hear, and experientially this will be so. The subject will not respond to a light or to objects shown him, and both during the d-ASC and afterward in his ordinary d-SoC, will swear that he perceived nothing. His eyes are still obviously functioning, and evoked brain responses recorded from the scalp show that input is traveling over the sensory nerves from his eye to his brain, but at the stage of Input-Processing the input is cut off so it does not reach awareness. Similarly, analgesia to pain may be induced in hypnosis and other d-ASCs.
When input is completely blocked in Input-Processing there may or may not be a substitution of other input. Thus information may be drawn from memory to substitute a hallucination for the actual blocked information. If, for example, a deeply hypnotized subject is told that he cannot see a particular person who is in the room, he may not simply experience a blank when looking at that person (which sometimes happens), he may actually hallucinate that details of the room behind the person and thus see no anomalous area in his visual field at all.
Another important change in d-ASCs is that, experientially, there may seem to be less Input-Processing, less abstracting, so a person feels more in touch with the raw, unprocessed input from his environment. This is especially striking with the psychedelics and is also reported as an aftereffect of concentrative meditation and as a direct effect of opening-up meditation. I know of no experimental studies that have thoroughly investigated whether one can actually be more aware of raw sensory data, but this is certainly a strong experiential feeling. It is not necessarily true, however. Vivid illusions can be mistaken for raw sensory data or (probably what happens) there can be a mixture of greater perception of raw data and more illusion substituted. Whether there is any particular d-ASC in which the balance is generally toward better perception through less abstracting is unknown at present.
Psychedelic-drug-induced conditions are particularly noteworthy for the experience of feeling in contact with the raw data of perception, and this makes perceptions exceptionally beautiful, vibrant, and alive. By contrast, usual perception in the ordinary d-SoC, seems lifeless, abstract, with all the beauty of reality removed to satisfy various needs and blend in with consensus reality.
Also reported in d-ASCs is an experience of feeling more in touch with the actual machinery of Input-Processing, gaining some insight or direct experience of how the abstracting processes work. For example, I was once watching a snowfall through a window at night, with a brilliant white spotlight on the roof illuminating the falling snow. I was in an unusually quiet state of mind (it was too brief for me to decide whether it was a d-ASC), and suddenly I noticed that instead of simply watching white snow fall (my usual experience), I was seeing each snowflake glinting and changing with all colors of the spectrum. I felt strongly that an automated Input-Processing activity that makes snow white had temporarily broken down. Afterward, it struck me that this was likely, for white is actually all the colors of the spectrum combined by Exteroception (eyes) and Input-Processing to the sensation of white. Thus a snowflake actually reflects all the colors of the spectrum, and active "doing" (to use Don Juan's term) on the viewer's part is required to turn it into white. There is no light energy of "white" in the physicist's world. Similarly, persons have reported gaining insights into how various automatic processes organize their perception by being able to see the lack of organization of it or by seeing the alternative organizations that occur.
Synesthesia is another radical change in Input-Processing that sometimes takes place in some d-ASCs. Stimulation of one sense is perceived in awareness as though a different sense had been stimulated at the same time. For example, hearing music is accompanied by seeing colored forms. This is the most common and perhaps the most beautiful form of synesthesia, and is sometimes reported with marijuana intoxication.

All techniques for inducing d-ASCs, except drug or physiological effects that act directly on various bodily functions, must work through Input-Processing. That subsystem mediates all communication. Yet it is useful to distinguish between induction techniques that are primarily designed to disrupt stabilization of the b-SoC in some other subsystem without significantly affecting Input-Processing per se, and those that are designed to disrupt Input-processing directly as a way of destabilizing the b-SoC.
In this latter class is a wide variety of techniques designed to give a person input that is uncanny in terms of the familiar ways of processing input in the b-SoC. The input is uncanny, anomalous in a sense of seeming familiar yet being dissimilar enough in various way to engender a pronounced feeling of nonfitting. Often the events are associated with an emotional charge or a feeling of significance that makes that fact that they do not fit even more important. Don Juan, for example, in training Carlos Castaneda to attain various d-ASCs would often frighten Castaneda or destabilize his ordinary state to an extraordinary degree by doing something that seemed almost, but not quite, familiar, such as simply acting normally but with subtle differences at various points.
The use of uncanny stimuli is not limited to inducing a d-ASC from an ordinary d-SoC.; it can work in reverse. When a person talks about "being brought down" from a valued d-ASC, he means he is presented with stimulation patterns that Input-Processing cannot handle in that d-ASC, so the d-ASC is destabilized, and he returns to his ordinary d-SoC.

Tao subsystems - I

Monday, March 25, 2013

almost perfect universal Tao

Cosmic microwave background seen by Planck
21 March 2013 Acquired by ESA’s Planck space telescope, the most detailed map ever created of the cosmic microwave background – the relic radiation from the Big Bang – was released today revealing the existence of features that challenge the foundations of our current understanding of the Universe.
The image is based on the initial 15.5 months of data from Planck and is the mission’s first all-sky picture of the oldest light in our Universe, imprinted on the sky when it was just 380 000 years old.
At that time, the young Universe was filled with a hot dense soup of interacting protons, electrons and photons at about 2700ºC. When the protons and electrons joined to form hydrogen atoms, the light was set free. As the Universe has expanded, this light today has been stretched out to microwave wavelengths, equivalent to a temperature of just 2.7 degrees above absolute zero.
This ‘cosmic microwave background’ – CMB – shows tiny temperature fluctuations that correspond to regions of slightly different densities at very early times, representing the seeds of all future structure: the stars and galaxies of today.
According to the standard model of cosmology, the fluctuations arose immediately after the Big Bang and were stretched to cosmologically large scales during a brief period of accelerated expansion known as inflation.
Planck was designed to map these fluctuations across the whole sky with greater resolution and sensitivity than ever before. By analysing the nature and distribution of the seeds in Planck’s CMB image, we can determine the composition and evolution of the Universe from its birth to the present day.
Overall, the information extracted from Planck’s new map provides an excellent confirmation of the standard model of cosmology at an unprecedented accuracy, setting a new benchmark in our manifest of the contents of the Universe. 
But because precision of Planck’s map is so high, it also made it possible to reveal some peculiar unexplained features that may well require new physics to be understood.
“The extraordinary quality of Planck’s portrait of the infant Universe allows us to peel back its layers to the very foundations, revealing that our blueprint of the cosmos is far from complete. Such discoveries were made possible by the unique technologies developed for that purpose by European industry,” says Jean-Jacques Dordain, ESA’s Director General.
“Since the release of Planck’s first all-sky image in 2010, we have been carefully extracting and analysing all of the foreground emissions that lie between us and the Universe’s first light, revealing the cosmic microwave background in the greatest detail yet,” adds George Efstathiou of the University of Cambridge, UK.
One of the most surprising findings is that the fluctuations in the CMB temperatures at large angular scales do not match those predicted by the standard model – their signals are not as strong as expected from the smaller scale structure revealed by Planck.

Thursday, March 21, 2013

Gross National Tao

Since 2009, on the initiative of the King of Bhutan in the 70s, it has been introduced and studied the concept of Gross National Happiness (GNH) index, based on nine  socio-cultural/environmental domains and a series of 33 indicators  mapped over 124 variables, and applied to Bhutan population.
Nine domains and 33 indicators of GNH index.
While there is no single official definition of GNH, the following description is widely used:
Gross National Happiness (GNH) measures the quality of a country in more holistic way (than GNP) and believes that the beneficial development of human society takes place when material and spiritual development occurs side by side to complement and reinforce each other.
The 2012 published result for Bhutan is a GNH value of 0,743, that means that 40,8% of the population reached happiness.
Slogan on a wall in Thimphu's School of Traditional Arts.
Source: Personal archive of Italian writer Mario Biondi.


Bhutan GNH Index

GNH: Concept
Gross National Happiness is a term coined by His Majesty the Fourth King of Bhutan, Jigme Singye Wangchuck in the 1970s. The concept implies that sustainable development should take a holistic approach towards notions of progress and give equal importance to non-economic aspects of wellbeing. The concept of GNH has often been explained by its four pillars: good governance, sustainable socio-economic development, cultural preservation, and environmental conservation. Lately the four pillars have been further classified into nine domains in order to create widespread understanding of GNH and to reflect the holistic range of GNH values. The nine domains are: psychological wellbeing, health, education, time use, cultural diversity and resilience, good governance, community vitality, ecological diversity and resilience, and living standards. The domains represents each of the components of wellbeing of the Bhutanese people, and the term ‘wellbeing’ here refers to fulfilling conditions of a ‘good life’ as per the values and principles laid down by the concept of Gross National Happiness.

The GNH Index: What is it?
The Gross National Happiness Index is a single number index developed from 33 indicators categorized under nine domains. The GNH Index is constructed based upon a robust multidimensional methodology known as the Alkire-Foster method.
The GNH Index is decomposable by any demographic characteristic and so is designed to create policy incentives for the government, NGOs and businesses of Bhutan to increase GNH. The 33 indicators under the nine domains aim to emphasize different aspects of wellbeing and different ways of meeting these underlying human needs. The 33 indicators are statistically reliable, normatively important, and easily understood by large audiences. The domains are equally weighted.  Within each domain, the objective indicators are given higher weights while the subjective and self-reported indicators are assigned lower weights.

The 2010 GNH Survey:
The Gross National Happiness survey was carried out in 2010 with representative samples taken at district and regional levels. The survey was administered using the GNH questionnaire which gathered data on a comprehensive picture of the wellbeing of Bhutanese. The survey gathered data from 7142 respondents; 6476 or 90.7% of the respondents had sufficient data to be included in the GNH Index.

The 2010 GNH Index: Highlights
The methodology basically provides three types of results: headcount, intensity and the overall GNH index. Headcount refers to the percentage of Bhutanese who are considered happy, and intensity is the average sufficiency enjoyed by the Bhutanese.
  • Headcount = 40.9% – This means that 41% of Bhutanese have sufficiency in six or more of the nine domains and are considered ‘happy’.
  • Intensity = 43.4% -The 59% of Bhutanese who are not considered ‘happy’ lack sufficiency in 43% of the domains. Thus unhappy Bhutanese on average lack sufficiency in just under four domains and enjoy sufficiency in just over five domains.
  • GNH Index = 0.743 – the GNH Index ranges from 0 to 1. A higher number is better. It reflects the percentage of Bhutanese who are happy and the percentage of domains in which not-yet-happy people have achieved sufficiency (headcount and intensity).
What else did the GNH Index reveal about happy people?  Here are some highlights:
  • Men are happier than women on average.
  • Of the nine domains, Bhutanese have the most sufficiency in health, then ecology, psychological wellbeing, and community vitality.
  • In urban areas, 50% of people are happy; in rural areas it is 37%.
  • Urban areas do better in health, living standards and education. Rural areas do better in community vitality, cultural resilience, and good governance.
  • Happiness is higher among people with a primary education or above than among those with no formal education, but higher education does not affect GNH very much.
  • The happiest people by occupation include civil servants and monks/anim. Interestingly, the unemployed are happier than corporate employees, housewives, farmers or the national work force.
  • Unmarried people and young people are among the happiest.

Wednesday, March 20, 2013

a legacy for Tao - III

Angels Fear Revisited:
Gregory Bateson’s Cybernetic Theory of Mind
Applied to Religion-Science Debates

Mary Catherine Bateson

Kinds of Messages
I am going to start with a story that deals with the relationship between scientific and other kinds of discourse. As Gregory asserted, “… thinking in terms of stories must be shared by all mind or minds, whether ours or those of redwood forests and sea anemones”. In the early 80s, I was teaching a course in the anthropology department of an elite American college, Amherst College, with the title “Peoples and Cultures of the Middle East,” and I showed a documentary film of the annual Muslim pilgrimage to Mecca.
(Parenthetically, many readers will remember Gregory’s story about Sol Tax and the question of whether it was appropriate to film a ceremony of the Native American Church in order to defend the sacramental use of peyote, so it is important to note here that although it is forbidden for any non-Muslim to make the Meccan pilgrimage or to enter the Holy Cities, there are a number of documentary films made by Muslim film makers. I don’t believe that the issue in the Sol Tax story is the use of technology. I think the issue is the conscious use by believers of words and actions ostensibly directed toward spiritual beings to direct an argument toward political authorities, a behavior which is fairly routine in American politics. Many ethnographers have filmed rituals, including Gregory, who is still regarded as a pioneer of visual anthropology and of the use of film to record and analyze patterns of behavior. It is an oversimplification to focus on the technology per se as a desecration. The question is what is said and enacted, to whom, and in what context.)
In any case, I showed in my classroom a film of the Meccan pilgrimage, and after the class a young woman from an evangelical Christian background came up to me, with tears running down her face, and said to me, “It never occurred to me that they believed their religion.” This was, to me, a very shocking thing to hear, so I want you to pause and be shocked for a moment, before I try to unpack her statement. In fact, I think she misstated her reaction – but at the same time, she revealed a fundamental misconception in all the Abrahamic religions – Christianity, Judaism and Islam – which continues to give us trouble to this day and has indeed become more severe. What she intended to say was not that she had thought Muslims were lying when they affirmed their religion. I think that what she meant was, “It never occurred to me that their experience of their religion was comparable to my experience of mine.” The medium of film had allowed her to empathize with an experience and recognize it in an unfamiliar and exotic context.
Gregory would have pointed out that we are mammals and that we respond in terms of relationships. But of course, this young woman had been brought up with the idea that religion is about beliefs that are either true or untrue, not about experience or about relationship. Christianity and Islam have both, at different times in their history, been preoccupied with accuracy of interpretation, avoidance of heresy, and the insistence that believers should concur on specific beliefs. They have asserted that the “truths” of different religions are mutually exclusive and in competition, what I sometimes call zero sum truth. My student erred in her understanding of the kind of message communicated in religious discourse. The classification of kinds of messages occurs at a different logical level from the message itself, and often contextually. Thus, for those familiar with theater, words spoken in the context of a theatrical performance are responded to differently from the same words spoken elsewhere.
We are constantly dealing with communication at multiple levels, where some kind of metamessage classifies a particular communication as report or speculation, humor or poetry, or, in the case of Gregory’s film about river otters, combat or play. Without this level of understanding, interpretation is impossible. Gregory’s interest in the ways in which messages are modified by context and by other messages, which was elaborated in the application of the Russellian theory of logical types to schizophrenia, became fundamental to his thinking about all biological communication including that involved in epigenesis. But back to Abraham, who must have been a fairly literal-minded chap – a bit like the schizophrenic Gregory spoke about, who eats the menu card instead of the dinner. At some level – assuming that any of this happened, of course – Abraham took the admonition: “You must be willing to give all that is most precious to you to god” literally. And off he went with a sharp knife to sacrifice his son.

the Tao of Programming: Book 5 - Maintenance

Geoffrey James, 1987
Book 5 - Maintenance

Thus spake the master programmer:
"Though a program be but three lines long, someday it will have to be maintained."


A well-used door needs no oil on its hinges.
A swift-flowing stream does not grow stagnant.
Neither sound nor thoughts can travel through a vacuum.
Software rots if not used.

These are great mysteries.


A manager asked a programmer how long it would take him to finish the program on which he was working. "It will be finished tomorrow", the programmer promptly replied.

"I think you are being unrealistic", said the manager, "Truthfully, how long will it take?"

The programmer thought for a moment. "I have some features that I wish to add. This will take at least two weeks", he finally said.

"Even that is too much to expect", insisted the manager, "I will be satisfied if you simply tell me when the program is complete."
The programmer agreed to this.

Several years later, the manager retired. On the way to his retirement luncheon, he discovered the programmer asleep at his terminal. He had been programming all night.


A novice programmer was once assigned to code a simple financial package.

The novice worked furiously for many days, but when his master reviewed his program, he discovered that it contained a screen editor, a set of generalized graphics routines, an artificial intelligence interface, but not the slightest mention of anything financial.

When the master asked about this, the novice became indignant. "Don't be so impatient", he said, "I'll put in the financial stuff eventually."


Does a good farmer neglect a crop he has planted?
Does a good teacher overlook even the most humble student?
Does a good father allow a single child to starve?
Does a good programmer refuse to maintain his code?

Tuesday, March 19, 2013

selfless Tao, divided Tao

© Igor Morski
The Abhidharma analysis shows the emergent formation of direct experience to the consciousness without the ground of an Ego-Self. The authors pose the question in the light of the Marvin Misnky e Ray Jackendoff models, which explicitly discuss the idea of a central agent or Self in the mind:

Selfless Minds; Divided Agents
From a contemporary standpoint, then, Abhidharma appears as the study of the emergent formation of direct experience without the ground of an ego-self. It is remarkable how well the overall logical form of some Abhidharma formulations fits that of contemporary scientific concern with emergent properties and societies of mind. (Or perhaps we should state it the other way round.) These latter contemporary scientific concerns have, however, been pursued independently of any disciplined analysis and direct examination of human experience. Since the reader may still be skeptical that science and human experience are inseparable partners, we will now tum to consider in more detail what happens when this partnership is one sided. What happens when the insight that mind is free of self is generated from within the very heart of science and yet is not connected to the rest of human experience?
We have seen how a view of selfless minds begins to take form with the cognitivist separation of consciousness and intentionality. We then saw how cognition can be studied as an emergent phenomenon in self-organizing, distributed networks. In this chapter, we have seen the usefulness of a mixed, "society" mode of description for cognitive processes and human experience. Of what use, then, is the idea of a central agent or self?

Most working cognitive scientists, and even some cognitivist philosophers, are content to ignore this question. One of the virtues of both Minsky's Society of Mind and Jackendoff's Consciousness and the Computational Mind is that each recognizes this question quite early on and takes it as a central theme. Minsky in particular distinguishes between the lowercase self, which refers "in a general sense to an entire person," and the uppercase Self, which refers to "that more mysterious sense of personal identity." He then asks, "Is this concept of a Self of any real use at all?" And he answers, "It is indeed-provided that we think of it not as a centralized and all-powerful entity, but as a society of ideas that include both our images of what the mind is and our ideals about what it ought to be."
The distinctions that Minsky draws in these remarks are suggestive, especially in the context of our discussion. They are close to the Buddhist distinction between the coherent pattern of dependently originated habits that we recognize as a person and the ego-self that a person may believe she has and constantly grasps after but which does not actually exist. That is, the word self is a convenient way of referring to a series of mental and bodily events and formations, that have a degree of causal coherence and integrity through time. And the capitalized Self does exemplify our sense that hidden in these transitory formations is a real, unchanging essence that is the source of our identity and that we must protect. But as we have seen, this latter conviction may be unfounded and, as Minsky insight fully notes, can actually be harmful.
But equally interesting are the ways in which Minsky's distinctions - or those of other cognitive scientists concerned with the same issue, such as Jackendoff - do not match those of the Buddhist tradition. We believe that the lack of fit is ultimately rooted in two related issues. First, contemporary cognitive science does not distinguish between the idea or representation of a Self and the actual basis of that representation, which is an individual's grasping after an egoself. Cognitive science has challenged the idea that there is a real thing to which the former applies, but it has not even thought to consider the latter. Second, cognitive science does not yet take seriously its own findings of the lack of a Self.
Both of these stem from the lack of a disciplined method for examination and inclusion of human experience in cognitive science. The major result of this lack is the issue that has been with us since the beginning: cognitive science offers us a purely theoretical discovery, which remains remote from actual human experience, of mind without self.
For example Minsky, on the same page from which the previous quotations were taken, writes that "perhaps it's because there are no persons in our heads to make us do the things we want-nor even ones to make us want to want-that we construct the myth that we're inside ourselves." This remark confuses two features of mind without self that we have repeatedly seen to be distinct: one is the lack of an ego-self and the other is grasping for an ego-self. We construct the belief or inner discourse that there is an ego-self not because the mind is ultimately empty of such a self but because the everyday conditioned mind is full of grasping. Or to make the point in the vocabulary of mindfulness/awareness, the belief is rooted in the accumulated tendencies that from moment to moment give rise to the unwholesome mental factors that reinforce grasping and craving. It is not the lack of an ego-self per se that is the source of this ongoing belief and private internal conversation; it is the emotional response to that lack. Since we habitually assume that there is an ego-self, our immediate response is to feel a loss when we cannot inferentially find the object of our convictions. We feel as if we have lost something precious and familiar, and so we immediately try to fill that loss with the belief in a self. But how can we lose something that we (that is, our temporary emergent "wes") never had? And if we never had an ego-self in the first place, what is the point of continually trying to maintain one by telling ourselves we're inside ourselves? If it is to ourselves that we are talking in this conversation, why should we need to tell ourselves all of this in the first place?
This feeling of loss, though somewhat natural when one's investigation is still at an inferential stage, is heightened and prolonged when the discovery of the lack of self remains purely theoretical. In the tradition of a mindful, open-ended examination of experience, the initial conceptual realization of mind without self is deepened to the point where it is realized in a direct, personal way. The realization shifts from being merely inferential to being direct experience through a journey where the actual practice of mindfulness/awareness plays a central role. And as a form of direct experience, generations of meditators attest that the lack of an ego-self does not continue to be experienced as a loss that needs to be supplemented by a new belief or inner dialogue. On the contrary, it is the beginning of a feeling of freedom from fixed beliefs, for it makes apparent precisely the openness and space in which a transformation of what the subject itself is, or could be, becomes possible.
Minsky suggests, however, that we embrace the idea of Self because "so much of what our minds do is hidden from the parts of us that are involved with verbal consciousness." Similarly, Jackendoff suggests that "awareness reflects a curious amalgam of the effects on the mind of both thought and the real world, while leaving totally opaque the means by which these effects come about." There are two problems with this position. In the first place, the hypothesized mental processes of which we are unaware are just that-processes hypothesized by the cognitivist information-processing model of the mind. It is this model that requires a host of subpersonal hidden processes and activities, not our experiences of the mind itself. But surely it is not these ever-changing phantoms of cognitive science that we can blame for our belief that we personally have an ego-self; to think so would be a confusion of levels of discourse. In the second place, even if we did have many mental activities at the subpersonal level inherently hidden from awareness, how would that explain our belief in an ego-self? A glance at the complexity of Jackendoff’s and Minsky's models of the mind suggests that were a mind actually to have all of these mechanisms, awareness of them would not necessarily even be desirable. Lack of awareness is not in itself a problem. What is a problem is the lack of discrimination and mindfulness of the habitual tendency to grasp, of which we can become aware. This type of mindfulness can be developed with great precision due to the fundamentally discontinuous - and hence unsolid-nature of our experience. (We have seen how some of this discontinuity and lack of solidity is quite consonant with modem cognitive science, and we are now even able to observe some of it from a neurophysiological standpoint.) The cultivation of such precision is possible not just in formal periods of practice but in our everyday lives. An entire tradition with numerous cultural variants and accessible methods testifies to the possibility and actuality of this human journey of investigation and experience.
As we can see from our discussion of both Minsky and Jackendoff, cognitive science basically ignores this possibility. This indifferent attitude generates two significant problems. First, by means of this ignoring, cognitive science denies itself the investigation of an entire domain of human experience. Even though the "plasticity" of experience, especially in its perceptual forms, has become something of a topic of debate among philosophers and cognitive scientists, no one is investigating the ways in which conscious awareness can be transformed as a result of practices such as mindfulness/awareness. In the mindfulness/awareness tradition, in contrast, the possibility of such transformation is the cornerstone of the entire study of mind.
The second problem is the one we have evoked from the very beginning of this book: science becomes remote from human experience and, in the case of cognitive science, generates a divided stance in which we are led to affirm consequences that we appear to be constitutionally incapable of accepting. Explicit attempts to heal this gap are broached only by a few, such as Gordon Globus, who asks the question, What is a neural network that it may be capable of supporting a Dasein, an embodied existence? or Sherry Turkle, who has explored a possible bridge between cognitive science and psychoanalysis. And yet, to the extent that research in cognitive science requires more and more that we revise our naive idea of what a cognizing subject is (its lack of solidity, its divided dynamics, and its generation from unconscious processes), the need for a bridge between cognitive science and an open-ended pragmatic approach to human experience will become only more inevitable. Indeed, cognitive science will be able to resist the need for such a bridge only by adopting an attitude that is inconsistent with its own theories and discoveries.
The deep problem, then, with the merely theoretical discovery of mind without self in as powerful and technical a context as late twentieth-century science is that it is almost impossible to avoid embracing some form of nihilism. If science continues to manipulate things without embracing a progresssive appreciation of how we live among those things, then the discovery of mind without self will have no life outside the laboratory, despite the fact that the mind in that laboratory is the very same mind without self. This mind discovers its own lack of a personal ground-a deep and remarkable discovery and yet has no means to embody that realization. Without such embodiment, we have little choice but to deny the self altogether, without giving up for one moment our habitual craving for what has just been denied us.
By nihilism we mean to refer precisely to Nietzsche's definition: "Radical nihilism is the conviction of an absolute untenability of existence when it comes to the highest values that one recognizes." In other words, the nihilistic predicament is the situation in which we know that our most cherished values are untenable, and yet we seem incapable of giving them up.
This nihilistic predicament emerges quite clearly in both Jackendoff's and Minsky's books. As we mentioned, Jackendoff claims, on the one hand, that "consciousness is not good for anything," and then, on the other hand, that consciousness is "too important for one's life-too much fun-to conceive of it as useless." Thus for Jackendoff belief in the causal efficacy of consciousness is untenable, and yet he-like the rest of us-is incapable of giving it up.
A similar predicament emerges at the end of Minsky's book. On the last pages of his Society of Mind, Minsky examines the notion of free will, which he calls "the myth of the third alternative" between determinism and chance. Science tells us that all processes are determined or depend in part on chance. There is no room, therefore, for some mysterious third possibility called a "free will," by which Minsky means "an Ego, Self, or Final Center of Control, from which we choose what we shall do at every fork in the road of time." What, then, is Minsky's response to this predicament? The final paragraph of his second-to-last page is worth quoting in full:
No matter that the physical world provides no room for freedom of the will: that concept is essential to our model of the mental realm. Too much of our psychology is based on it for us to ever give it up. We're virtually forced to maintain that belief, even though we know it's false-except, of course when we're inspired to find the flaws in all our beliefs, whatever may be the consequence to cheerfulness and mental peace.
At the moment, it is the feeling tone of Minsky's dilemma that concerns us. Although he ends The Society of Mind a page later with the more upbeat thought that "whenever anything goes wrong there are always other realms of thought," the quotation on free will is actually his final vision of the relation between science and human experience. As with Jackendoff, science and human experience come apart, and there is no way to put them together again. Such a situation exemplifies perfectly Nietzsche's hundred-year-old diagnosis of our cultural predicament. (The remark of Nietzsche's we quoted is dated 1887.) We are forced - condemned-to believe in something we know can't be true.
We are going to such great lengths to discuss both Minsky's and Jackendoff's work because each clearly presents, in its own way, the predicament we all face. Indeed, Minsky and Jackendoff have done us the great service of not shying away from the situation, as do other scientists and philosophers who imagine that there are secret recesses within the brain that hide an existing self or who suppose that probability and uncertainty at the quantum level provide a home for free will.
Nevertheless, the issues as discussed by Minsky and Jackendoff are rather starkly met. Both are saying that there is an unbridgeable contradiction between cognitive science and human experience. Cognitive science tells us that we do not have a Self that is efficacious and free. We cannot, however, give up such a belief-we are "virtually forced" to maintain it. The mindfulness/awareness tradition, on the other hand, says that we are most certainly not forced to maintain it. This tradition offers a fourth alternative, a vision of freedom of action that is radically different from our usual conceptions of freedom.
Let us be clear that this is not an issue in the philosophy of free will. (We are resisting, with great effort, the urge to launch into a discussion of physical versus structural determinism, prediction, and many other philosophical reactions to Minsky's and Jackendoff's claims.) What is at issue is that there is a tradition the very heart of which is to examine such issues in experience. Virtually the entire Buddhist path has to do with going beyond emotional grasping to ego. Meditative techniques, traditions of study and contemplation, social action, and the organization of entire communities have been harnessed toward this end. Histories, psychologies, and sociologies have been (and can be) written about it. As we have described several times, human beings do transform themselves (and they certainly do believe that they can transform themselves) progressively in this way. The result, in this world view, is that real freedom comes not from the decisions of an ego-self's “will” but from action without any Self whatsoever.
What cognitive science is saying about selfless minds is important for human experience. Cognitive science speaks with authority in modem society. Yet there is the danger that cognitive scientists will follow Hume's example: having brilliantly formulated the discovery of selfless minds, a discovery of fundamental relevance to the human situation, but conceiving of no way to bring that discovery together with everyday experience, they will have no recourse but to shrug and go off to any modem equivalent of backgammon. We have been attempting to offer instead a bridge back to human experience.

Minding the World
We have spent ... looking for the self, but even when we could not find it, we never doubted the stability of the world. How could we, when it seemed to provide the setting for all of our examinations? And yet when, having discovered the groundlessness of the self, we tum toward the world, we are no longer sure we can find it. Or perhaps we should say that once we let go of a fixed self, we no longer know how to look for the world. We define the world, after all, as that which is not-self, that which is different from the self, but how can we do this when we no longer have a self as a reference point?
Once more, we seem to be losing our· grip on something familiar. Indeed, at this point most people will probably become quite nervous and see the specters of solipsism, subjectivism, and idealism lurking on the horizon, even though we already know that we cannot find a self to serve as the anchor point for such literally self-centered views. We are, perhaps, more attached to the idea that the world has a fixed and ultimate ground than we are to the idea of a personal self. We need, then, to pause and become fully aware of this anxiety that lies underneath the varieties of cognitive and emergent realism.

Monday, March 18, 2013

the song of Tao

Tilopa (988 – 1069) was an indian mahasiddha of Vajrayana Buddhism and developer of the set of spiritual practices of the tibetan tantrism known as Mahamudra.
The Song of Mahamudra, addressed to his disciple Nāropā, expresses what is inexpressible - "beyond all words and symbols" - which represents the supreme understanding, where the subject which knows and the object which is known disappear and only knowledge remains:

Mahamudra is beyond all words and symbols,
but for you Naropa,
earnest and loyal,
must this be said:

The Void needs no reliance,
Mahamudra rest on nought.
Without making an effort,
but remaining loose and natural,
one can break the yoke -
thus gaining liberation.

If one sees naught when staring into space;
if with the mind one then observes the mind,
one destroys distinctions
and reaches buddahood.

The clouds that wander through the sky have no roots,
no home, nor do the distinctive thoughts
floating through the mind.
Once the Self-mind is seen,
discrimination stops.

In space shapes and colours form,
but neither by black nor white is space tinged.
From the Self-mind all things emerge,
the mind by virtues and by vices is not stained.

The darkness of ages
cannot shroud the glowing sun,
the long kalpas of samsara
never can hide the mind’s brilliant light.

Though words are spoken to explain the void,
the void as such can never be expressed.
Though we say “the mind is bright as light”,
it is beyond all words and symbols.
Although the mind is void in essence,
all things it embraces and contains.

Do nought with the body but relax;
shut firm the mouth and silent remain;
empty your mind and think of nought.
Like a hollow bamboo rest at ease with your body.
Giving not nor taking, put your mind at rest.
Mahamudra is like a mind that clings to nought.
Thus practicing, in time you will reach buddhahood.

The practice of mantra and pāramitā,
instruction in the sutras and precepts,
and teaching from the schools and scriptures,
will not bring realization of the innate truth.
For if the mind when filled with some desire
should seek a goal,
it only hides the light.

He who keeps tantric precepts, yet discriminates,
betrays the spirit of samaya.
Cease all activity, abandon all desire,
let thoughts rise and fall
as they will like ocean waves.
He who never harms the non-abiding,
nor the principle of non-distinction,
upholds the tantric precepts.

He who abandons craving
and clings not to this and that,
perceives the real meaning given in the scriptures.

In Mahamudra all one’s sins are burned;
in Mahamudra one is released
from the prison of this world.
This is the dharma’s supreme torch.
Those who disbelieve it are fools,
who ever wallow in misery and sorrow.

To strive for liberation
one should rely on a guru.
When our mind receives his blessings
emancipation is at hand.

Alas,all things in the world are meaningless,
they are but sorrow’s seeds.
Small teachings lead to acts -
one should only follow teachings that are great.

To transcend duality is the kingly view.
To conquer distractions is the royal practice.
The path of no-practice is the way of all the buddhas.
He who treads that path reaches buddhahood.

Transient is this world,
like phantoms and dreams, substance it has none.
Renounce it and forsake your kin,
cut the strings of lust and hatred,
and meditate in woods and mountains.

If without effort
you remain loosely in the natural state,
soon Mahamudra you will win
and attain the non-attainment.

Cut the root of a tree and the leaves will wither;
cut the root of your mind and samsara falls.
The light of any lamp dispels in a moment
the darkness of long kalpas;
the strong light of the Mind in but a flash
will burn the veil of ignorance.

Who ever clings to the mind
sees not the truth of what is beyond the mind.
Whoever strives to practice dharma
finds not the truth of beyond-practice.
To know what is beyond both mind and practice
one should cut cleanly through the root of the mind
and stare naked.
One should thus break away from all distinctions
and remain at ease.

One should not give or take,
but remain natural - for Mahamudra
is beyond all acceptance and rejection.
Since Alaya is not born,
no one can obstruct or soil it;
staying in the unborn realm
all appearance will dissolve into dharmata,
and self-will and pride will vanish into nought.

The Supreme Understanding
transcends all this and that;
The supreme action
embraces great resourcefulness without attachment.
The supreme accomplishment
is to realize immanence without hope.

At first a yogi feels his mind
is tumbling like a waterfall,
in mid-course, like the Ganges,
it flows on slow and gentle;
in the end it is a great vast ocean
where the lights of son and mother merge in one.

The experience of the ultimate is not an experience at all – because the experiencer is lost. And when there is no experiencer, what can be said about it? Who will say it? Who will relate the experience? When there is no subject, the object also disappears – the banks disappear, only the river of experience remains. Knowledge is there, but the knower is not.

That has been the problem for all the mystics. They reach to the ultimate, but they cannot relate it to those who are following. They cannot relate it to others who would like to have an intellectual understanding. They have become one with it. Their whole being relates it, but no intellectual communication is possible. They can give it to you if you are ready to receive; they can allow it to happen in you if you also allow it, if you are receptive and open. But words won’t do, symbols won’t help; theories and doctrines are of no use at all.

The experience is such that it is more like an experiencing than like an experience. It is a process – and it begins, but it never ends. You enter into it, but you never possess it. It is like a drop dropping in the ocean, or, the ocean itself dropping into the drop. It is a deep merger, it is oneness, you simply melt away into it. Nothing is left behind, not even a trace, so who will communicate? Who will come back to the world of the valley? Who will come back to this dark night to tell you?

All the mystics all over the world have always felt impotent as far as communication is concerned. Communion is possible, but communication, no. This has to be understood from the very beginning. A communion is a totally different dimension: two hearts meet, it is a love affair. Communication is from head to head; communion is from heart to heart, communion is a feeling. Communication is knowledge: only words are given, only words are said, and only words are taken and understood. And words are such: the very nature of words is so dead that nothing alive can be related through them. Even in ordinary life, leave aside the ultimate, even in ordinary experiencing when you have a peak moment, an ecstatic moment, when you really feel something and become something, it becomes impossible to relate it in words.