the Division Bell, cover, Storm Thorgerson |
The induction of an altered discrete state of consciousness (d-ASC) starting from the base state of consciousness b-SoC is a non trivial procedure, even if in many cases quite natural, for example for the transition from the waking state to sleep. The base state of consciousness is stabilized in multiple ways and to transit to an altered d-ASC is necessary "to force" a disruption and a repatterning.
Induction of Altered States
We have now seen that a d-SoC is a system that is stabilized in multiple ways, so as to maintain its integrity in the face of changing environmental input and changing actions taken in response to the environment. Suppose that the coping function of the particular d-SoC is not appropriate for the existing environmental situation, or that the environment is safe and stable and no particular d-SoC is needed to cope with it, and you want to transit to a d-ASC: what do you do? This chapter examines that process of inducing a d-ASC in general from the systems approach, and then considers its application to three transitions from ordinary consciousness: to sleep, to hypnosis, and to meditative states.
Inducing a d-ASC: General Principles
The staring point is the baseline state of consciousness (b-SoC), usually the ordinary d-SoC. The b-SoC is an active, stable, overall patterning of psychological functions which, via multiple stabilization relationships (loading, positive and negative feedback, and limiting) among its constituent parts, maintains it identity in spite of environmental changes. I emphasize multiple stabilization, for as in any well-engineered complex system, there are many processes maintaining a state of consciousness: it would be too vulnerable to unadaptive disruption if there were only a few. Inducing the transition to a d-ASC is a three-step process, based on two psychological (and/or physiological) operations. The process is what happens internally; the operations are the particular things you do to yourself, or someone does to you, to make the induction process happen. In the following pages the steps of the process are described sequentially and the operations are described sequentially, but note that the same action may function as both kinds of induction operation simultaneously.
Induction Operations: Disruption and Patterning
The first induction operation is to disrupt the stabilization of your b-SoC, to interfere with the loading, positive and negative feedback, and limiting processes/structures that keep your psychological structures operating within their ordinary range. Several stabilization processes must be disrupted. If, for example, someone were to clap his hands loudly right now, while you are reading, you would be somewhat startled. Your level of activation would be increased; you might even jump. I doubt, however, that you would enter a d-ASC. Throwing a totally unexpected and intense stimulus into your own mind could cause a momentary shift within the pattern of your ordinary d-SoC but not a transition to a d-ASC. If you were drowsy it might totally disrupt one or two stabilization processes for a moment, but since multiple stabilization processes are ongoing on, this would not be sufficient to alter your state of consciousness.So the first operation in inducing a d-ASC is to disrupt enough stabilization process to a great enough extent that the baseline pattern of consciousness cannot maintain its integrity. If only some of the stabilization processes are disrupted, the remaining undisrupted ones may be sufficient to hold the system together; thus, an induction procedure can be carried out without actually inducing a d-ASC. Unfortunately, some investigators have equated the procedure of induction with the presence of a d-ASC, a methodological fallacy. Stabilization processes can be disrupted directly when they can be identified, or indirectly by pushing some psychological functions to and beyond their limits of functioning. Particular subsystems, for example, can be disrupted by overloading them with stimuli, depriving them of stimuli, or giving them anomalous stimuli that cannot processed in habitual ways. The functioning of a subsystem can be disrupted by withdrawing attention/awareness energy or other psychological energy from it, a gentle kind of disruption. If the operation of one subsystem is disrupted, it may alter the operation of a second subsystem via feedback paths, etc. Drugs can disrupt the functioning of the b-SoC, as can any intense physiological procedure, such as exhaustion or exercise. The second induction operation is to apply patterning forces, stimuli that then push disrupted psychological functioning toward the new pattern of the desired d-ASC. These patterning stimuli may also serve to disrupt the ordinary functioning of the b-SoC insofar as they are incongruent with the functioning of the b-SoC. Thus the same stimuli may serve as both disruptive and patterning forces. For example, viewing a diagram that makes little sense in the baseline state can be a mild disrupting force. But the same diagram, viewed in the altered state, may make sense or be esthetically pleasing and thus may become a mandala for meditation, a patterning force.
Steps in the Induction Process
Figure 7-1 sketches the steps of the induction process. The b-SoC is represented as blocks of various shapes and sizes (representing particular psychological structures) forming a system/construction (the state of consciousness) in a gravitational field (the environment). At the extreme left, a number of psychological structures are assembled into a stable construction, the b-SoC. The detached figures below the base of the construction represent psychological potentials not available in the b-SoC.
Disrupting (and patterning) forces, represented by the arrows, are applied to begin induction. The second figure from the left depicts this beginning and represents change within the b-SoC. The disruptive (and patterning) forces are being applied, and while the overall construction remains the same, some the relationships within it have changed. System change has about reached its limit: at the right and left ends of the construction, for example, things are close to falling apart. Particular psychological structures/subsystems have varied as far as they can while still maintaining the overall pattern of the system.
Also shown is the changing relationship of some of the latent potentials outside consciousness, changes we must postulate from this systems approach and our knowledge of the dynamic unconscious, but about which we have little empirical data.
If the disrupting forces are successful in finally breaking down the organization of the b-SoC, the second step of the induction process occurs, the construction/state of consciousness comes apart, and a transitional period occurs. In Figure 7-1 this is depicted as the scattering of parts of the construction, without clear-cut relationships to one another or perhaps with momentary dissociated relationships as with the small square, the circle, and the hexagon on the left side of the transition diagram. The disrupting forces are now represented by the light arrow, as they are not as important now that the disruption has actually occurred; the now more important patterning forces are represented by the heavy arrows. The patterning stimuli/forces must now push the isolated psychological structures into a new construction, the third and final step of the processes in which a new, self-stabilized structure, the d-ASC, forms. Some of the psychological structures/functions present in the b-SoC, such as those represented by the squares, trapezoids, circles, and small hexagon, may not be available in this new state of consciousness; other psychological functions not available in the b-SoC have now become available. Some functions available in the b-SoC may be available at the same or at an altered level of functioning in the d-ASC. There is a change in both the selection of human potentials used and the manner in which they are constructed into a working system.
Figure 7-1 also indicates that the patterning and disrupting forces may have to continue to be present, perhaps in attenuated form, in order for this new state to be stable. The d-ASC may not have enough internal stabilization at first to hold up against internal or environmental change, and artificial props may be needed. For example, a person may at first have to be hypnotized in a very quiet, supportive environment in order to make the transition into hypnosis, but after he has been hypnotized a few times, the d-ASC is stable enough so that he can remain hypnotized under noisy, chaotic conditions.
In following this example you probably thought of going from your ordinary state to some more exotic d-ASC, but this theoretical sequence applies for transition from any d-SoC to any other d-SoC. Indeed, this is also the deinduction process, the process of going from a d-ASC back to the b-SoC. Disrupting forces are applied to destabilize the altered state, and patterning forces to reinstate the baseline state; a transitional period ensues, and the baseline state re-forms. Since it is generally much easier to get back into our ordinary state, we usually pay little attention to the deinduction process, although it is just as complex in principle as the induction process.
It may be that some d-SoCs cannot be reached directly from another particular d-SoC; some intermediary d-SoC has to be traversed. The process is like crossing a stream that is too wide to leap over directly: you have to leap onto one or more stepping stones in sequence to get to the other side. Each stepping stone is a stable place in itself, but they are transitional with respect to the beginning and end points of the process. Some of the jhana states of Buddhist meditation may be of this nature. This kind of stable transitional state should not be confused with the inherently unstable transitional periods discussed above, and we should be careful in our use of the words state and period.
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.