Angels Fear Revisited:
Gregory Bateson’s Cybernetic Theory of Mind
Applied to Religion-Science Debates
Gregory Bateson’s Cybernetic Theory of Mind
Applied to Religion-Science Debates
Mary Catherine Bateson
Logical Types in Mental Process
Gregory’s postwar research on communication was carried out in the context of psychiatry, with a focus on pathology and its etiology. The research of the Bateson group started out oriented towards solving the problem of schizophrenia, yet all the time that they were talking about schizophrenia they were also talking among themselves about humor, about poetry, and about religion, all of which involve switching back and forth between logical types – but the work was published as research on pathology. They identified the double bind in families, defined in relation to the logical types, as a possible cause (or trigger) of schizophrenia, yet once the work is taken out of its immediate context, it becomes clear that the double bind is pervasive. Double binds are by no means limited to the families of schizophrenics and indeed they may be characteristic of all multiply coupled and embedded systems such as we discover in the natural world, and do not always result in pathology.
On the one hand, religion seems to depend upon logical type confusion, so it is fairly easy to connect religious experience with psychopathology. On the other hand, religious traditions look like ways of dealing with the limitations of other kinds of knowledge and the need to function at many different levels, with inevitable conflicts and ambiguities between them. It may, for example, be possible to describe a condition like obesity in strictly physiological terms, yet an understanding of the diverse and multiple causation of different cases of obesity will range from genetic to socio-economic and ideological factors, with multiple possibilities for contradiction and inappropriate intervention at different levels. It is not easy to integrate biomedical understanding with explanations of psychological and social processes. As individuals, we can hardly help experiencing knowledge as fragmented. Scientific method depends on cutting questions down to size by breaking them into manageable pieces. Scientists necessarily focus on parts of the whole and, like laymen, must take most of it – the findings of others which they have not confirmed – on faith in the markers of scientific communication.
Inevitably, in periods of great scientific progress, there is a tendency to exaggerate that progress, and we are in a period today when some scientists and much of the general public seem to believe that focusing on the DNA molecule is the answer to everything and, more ominously, to the control of everything. Yet genetic causation also depends on the transmission and interpretation of messages at other systemic levels, and on complex contextual conditions that convert what appears to be a lineal causal system into a circular one. As with political power, causation always goes both ways. The general public is, in a curious way, buying into a form of biological fundamentalism that is itself dangerous because of the metaphors of unilateral control that it proposes. Overemphasis on “master molecules” and “selfish genes” is as likely to lead to authoritarianism as is monotheism.
On the one hand, religion seems to depend upon logical type confusion, so it is fairly easy to connect religious experience with psychopathology. On the other hand, religious traditions look like ways of dealing with the limitations of other kinds of knowledge and the need to function at many different levels, with inevitable conflicts and ambiguities between them. It may, for example, be possible to describe a condition like obesity in strictly physiological terms, yet an understanding of the diverse and multiple causation of different cases of obesity will range from genetic to socio-economic and ideological factors, with multiple possibilities for contradiction and inappropriate intervention at different levels. It is not easy to integrate biomedical understanding with explanations of psychological and social processes. As individuals, we can hardly help experiencing knowledge as fragmented. Scientific method depends on cutting questions down to size by breaking them into manageable pieces. Scientists necessarily focus on parts of the whole and, like laymen, must take most of it – the findings of others which they have not confirmed – on faith in the markers of scientific communication.
Inevitably, in periods of great scientific progress, there is a tendency to exaggerate that progress, and we are in a period today when some scientists and much of the general public seem to believe that focusing on the DNA molecule is the answer to everything and, more ominously, to the control of everything. Yet genetic causation also depends on the transmission and interpretation of messages at other systemic levels, and on complex contextual conditions that convert what appears to be a lineal causal system into a circular one. As with political power, causation always goes both ways. The general public is, in a curious way, buying into a form of biological fundamentalism that is itself dangerous because of the metaphors of unilateral control that it proposes. Overemphasis on “master molecules” and “selfish genes” is as likely to lead to authoritarianism as is monotheism.
Discussion
There are many kinds of ignorance that lead to maladaptive and destructive behavior, including the distorted perception that Gregory connected with conscious purpose and a variety of distortions connected in other ways with religion, such as the initial rejection of attempts to slow global warming and the Kyoto Treaty by Evangelical Christians because we are in the last days and the world will end
shortly. At Burg Wartenstein Gregory proposed that it might be useful to construct a typology of error. Both in our empty-headed school committees and in our dogmatic economists, in fact in many professions and sometimes in scientists as well as in religionists, there is a form of ignorance that is newly dangerous, and we are all at risk of slipping into it.
It may be impossible to arrive at an internally consistent understanding of the world that integrates the details at every level – and certainly impossible for an individual. But thinking in terms of systems offers a different kind of holism where we can see the similarities between ourselves and systems of many kinds, not only organisms but ecosystems and human communities, and we can see them living, responding, and changing. The details must be left to specialists but the patterns still connect.
It is important to keep on trying to understand the limits of science – and at the same time, not to become too arrogant about the understanding that has been achieved. Gregory says of scientists, “We are arrogant about what we might know tomorrow but humble because we know so little today”. We need somehow to build a bridge that allows people to deal with the limits of what they can know scientifically, and still have a mythic and aesthetic sense of their world. Fundamentalism is for many an adaptation to a sense of loss, and loss properly inspires compassion. The student I described earlier came to mind, after I had not thought about her for 20 years, because she was devastated, her foundations were shaken by her recognition of the deep feeling and passion of others. But her foundations were built on a fallacy, and the name of that fallacy is not Christianity, it’s not Islam, it’s not even religion – it’s a fallacy about the truth values of religious statements that may still be valuable for an integrated life. Gregory was convinced of the possibility that systems theory and biology might meet in a description of the natural world that would persuade our species, no longer looking outside that world for explanations of its wonders, to treat it not only with respect but with reverence and recognition.
Gregory was pursuing the use of cybernetics to describe natural systems as wholes in ways acceptable to science, which would still evoke wisdom and a sense of the sacred. In doing this he developed two interrelated analytic tools both for science and for popular understandings of science. One of these was the use of communications theory and the logical types. The other was an understanding of the mental characteristics of systems created by communication, within and between organisms.
shortly. At Burg Wartenstein Gregory proposed that it might be useful to construct a typology of error. Both in our empty-headed school committees and in our dogmatic economists, in fact in many professions and sometimes in scientists as well as in religionists, there is a form of ignorance that is newly dangerous, and we are all at risk of slipping into it.
It may be impossible to arrive at an internally consistent understanding of the world that integrates the details at every level – and certainly impossible for an individual. But thinking in terms of systems offers a different kind of holism where we can see the similarities between ourselves and systems of many kinds, not only organisms but ecosystems and human communities, and we can see them living, responding, and changing. The details must be left to specialists but the patterns still connect.
It is important to keep on trying to understand the limits of science – and at the same time, not to become too arrogant about the understanding that has been achieved. Gregory says of scientists, “We are arrogant about what we might know tomorrow but humble because we know so little today”. We need somehow to build a bridge that allows people to deal with the limits of what they can know scientifically, and still have a mythic and aesthetic sense of their world. Fundamentalism is for many an adaptation to a sense of loss, and loss properly inspires compassion. The student I described earlier came to mind, after I had not thought about her for 20 years, because she was devastated, her foundations were shaken by her recognition of the deep feeling and passion of others. But her foundations were built on a fallacy, and the name of that fallacy is not Christianity, it’s not Islam, it’s not even religion – it’s a fallacy about the truth values of religious statements that may still be valuable for an integrated life. Gregory was convinced of the possibility that systems theory and biology might meet in a description of the natural world that would persuade our species, no longer looking outside that world for explanations of its wonders, to treat it not only with respect but with reverence and recognition.
Gregory was pursuing the use of cybernetics to describe natural systems as wholes in ways acceptable to science, which would still evoke wisdom and a sense of the sacred. In doing this he developed two interrelated analytic tools both for science and for popular understandings of science. One of these was the use of communications theory and the logical types. The other was an understanding of the mental characteristics of systems created by communication, within and between organisms.