"STABILITY" AND "CHANGE" DESCRIBE PARTS OF OUR DESCRIPTIONS
In other parts of this book, the word stable and also, necessarily, the word change will become very important. It is therefore wise to examine these words now in the introductory phase of our task. What traps do these words contain or conceal?
Stable is commonly used as an adjective applied to a thing. A chemical compound, house, ecosystem, or government is described as stable. If we pursue this matter further, we shall be told that the stable object is unchanging under the impact or stress of some particular external or internal variable or, perhaps, that it resists the passage of time.
If we start to investigate what lies behind this use of stability, we shall find a wide range of mechanisms. At the simplest level, we have simple physical hardness or viscosity, qualities descriptive of relations of impact between the stable object and some other. At more complex levels, the whole mass of interlocking processes called life may be involved in keeping our object in a state of change that can maintain some necessary constants, such as body temperature, blood circulation, blood sugar or even life itself.
The acrobat on the high wire maintains his stability by continual correction of his imbalance.
These more complex examples suggest that when we use stability in talking about living things or self-corrective circuits, we should follow the example of the entities about which we are talking. For the acrobat on the high wire, his or her so-called "balance" is important; so, for the mammalian body, is its "temperature". The changing state of these important variables from moment to moment is reported in the communication networks of the body. To follow the example of the entity, we should define "stability" always by reference to the ongoing truth of some descriptive proposition. The statement "The acrobat is on the high wire" continues to be true under impact of small breezes and vibrations of the wire. This "stability" is the result of continual changes in descriptions of the acrobat's posture and the position of his or her balancing pole.
It follows that when we talk about living entities, statements about "stability" should always be labeled by reference to some descriptive proposition so that the typing of the word, stable, may be clear. We shall see later, especially in Chapter ..., that every descriptive proposition is to be characterized according to logical typing of subject, predicate, and context.
Similarly, all statements about change require the same sort of precision. Such profound saws as the French "plus ça change, plus c'est la même chose" owe their wiseacre wisdom to a muddling of logical types. What "changes" and what "stays the same" are both of them descriptive propositions, but of different order.
Some comment on the list of presuppositions examined in this chapter is called for. First of all, the list is in no sense complete, and there is no suggestion that such a thing as a complete list of verities or generalities could be prepared. Is it even a characteristic of the world in which we live that such a list should be finite?
In the preparation of this chapter, roughly another dozen candidates for inclusion were dropped, and a number of others were removed from this chapter to become integrated parts of Chapters ... However, even with its incompleteness, there are a number of possible exercises that the reader might perform with the list.
First, when we have a list, the natural impulse of the scientist is to start classifying or ordering its members. This I have partly done, breaking the list into four groups in which the members are linked together in various ways. It would be a nontrivial exercise to list the ways in which such verities or presuppositions may be connected. The grouping I have imposed is as follows:
A first cluster includes numbers 1 to 5, which seem to be related aspects of the necessary phenomenon of coding. There, for example, the proposition that "science never proves anything" is rather easily recognized as a synonym for the distinction between map and territory; both follow from the Ames experiments and the generalization of natural history that "there is no objective experience."
It is interesting to note that on the abstract and philosophical side, this group of generalizations has to depend very closely on something like Occam's razor or the rule of parsimony. Without some such ultimate criterion, there is no ultimate way of choosing between one hypothesis and another. The criterion found necessary is of simplicity versus complexity. But along with these generalizations stands their connection with neurophysiology, Ames experiments, and the like. One wonders immediately whether the material on perception does not go along with the more philosophical material because the process of perception contains something like an Occam's razor or a criterion of parsimony. The discussion of wholes and parts in number 5 is a spelling out of a common form of transformation that occurs in those processes we call description.
Numbers 6, 7 and 8 form a second cluster, dealing with questions of the random and the ordered. The reader will observe that the notion that the new can be plucked only out of the random is in almost total contradiction to the inevitability of entropy. The whole matter of entropy and negentropy and the contrasts between the set of generalities associated with these words and those associated with energy will be dealt with in Chapter 6... in the discussion of the economics of flexibility. Here it is only necessary to note the interesting formal analogy between the apparent contradiction in this cluster and the discrimination drawn in the third cluster, in which number 9 contrasts number with quantity. The sort of thinking that deals with quantity resembles in many ways the thinking that surrounds the concept of energy; whereas the concept of number is much more closely related to the concepts of pattern and negentropy.
The central mystery of evolution lies, of course, in the contrast between statements of the second law of thermodynamics and the observation that the new can only be plucked from the random. It was this contrast that Darwin partly resolved by his theory of natural selection.
The other two clusters in the list as given are 9 to 12 and 13 to 16. I will leave it to the reader to construct his or her phrasings of how these clusters are internally related and to create other clusters according to his/her own ways of thought.
In Chapter ... I shall continue to sketch in the background of my thesis with a listing of generalities or presuppositions. I shall, however, come closer to the central problems of thought and evolution, trying to give answers to the question: In what ways can two or more items of information or command work together or in opposition? This question with its multiple answers seems to me to be central to any theory of thought or evolution.
Stable is commonly used as an adjective applied to a thing. A chemical compound, house, ecosystem, or government is described as stable. If we pursue this matter further, we shall be told that the stable object is unchanging under the impact or stress of some particular external or internal variable or, perhaps, that it resists the passage of time.
If we start to investigate what lies behind this use of stability, we shall find a wide range of mechanisms. At the simplest level, we have simple physical hardness or viscosity, qualities descriptive of relations of impact between the stable object and some other. At more complex levels, the whole mass of interlocking processes called life may be involved in keeping our object in a state of change that can maintain some necessary constants, such as body temperature, blood circulation, blood sugar or even life itself.
The acrobat on the high wire maintains his stability by continual correction of his imbalance.
These more complex examples suggest that when we use stability in talking about living things or self-corrective circuits, we should follow the example of the entities about which we are talking. For the acrobat on the high wire, his or her so-called "balance" is important; so, for the mammalian body, is its "temperature". The changing state of these important variables from moment to moment is reported in the communication networks of the body. To follow the example of the entity, we should define "stability" always by reference to the ongoing truth of some descriptive proposition. The statement "The acrobat is on the high wire" continues to be true under impact of small breezes and vibrations of the wire. This "stability" is the result of continual changes in descriptions of the acrobat's posture and the position of his or her balancing pole.
It follows that when we talk about living entities, statements about "stability" should always be labeled by reference to some descriptive proposition so that the typing of the word, stable, may be clear. We shall see later, especially in Chapter ..., that every descriptive proposition is to be characterized according to logical typing of subject, predicate, and context.
Similarly, all statements about change require the same sort of precision. Such profound saws as the French "plus ça change, plus c'est la même chose" owe their wiseacre wisdom to a muddling of logical types. What "changes" and what "stays the same" are both of them descriptive propositions, but of different order.
Some comment on the list of presuppositions examined in this chapter is called for. First of all, the list is in no sense complete, and there is no suggestion that such a thing as a complete list of verities or generalities could be prepared. Is it even a characteristic of the world in which we live that such a list should be finite?
In the preparation of this chapter, roughly another dozen candidates for inclusion were dropped, and a number of others were removed from this chapter to become integrated parts of Chapters ... However, even with its incompleteness, there are a number of possible exercises that the reader might perform with the list.
First, when we have a list, the natural impulse of the scientist is to start classifying or ordering its members. This I have partly done, breaking the list into four groups in which the members are linked together in various ways. It would be a nontrivial exercise to list the ways in which such verities or presuppositions may be connected. The grouping I have imposed is as follows:
A first cluster includes numbers 1 to 5, which seem to be related aspects of the necessary phenomenon of coding. There, for example, the proposition that "science never proves anything" is rather easily recognized as a synonym for the distinction between map and territory; both follow from the Ames experiments and the generalization of natural history that "there is no objective experience."
It is interesting to note that on the abstract and philosophical side, this group of generalizations has to depend very closely on something like Occam's razor or the rule of parsimony. Without some such ultimate criterion, there is no ultimate way of choosing between one hypothesis and another. The criterion found necessary is of simplicity versus complexity. But along with these generalizations stands their connection with neurophysiology, Ames experiments, and the like. One wonders immediately whether the material on perception does not go along with the more philosophical material because the process of perception contains something like an Occam's razor or a criterion of parsimony. The discussion of wholes and parts in number 5 is a spelling out of a common form of transformation that occurs in those processes we call description.
Numbers 6, 7 and 8 form a second cluster, dealing with questions of the random and the ordered. The reader will observe that the notion that the new can be plucked only out of the random is in almost total contradiction to the inevitability of entropy. The whole matter of entropy and negentropy and the contrasts between the set of generalities associated with these words and those associated with energy will be dealt with in Chapter 6... in the discussion of the economics of flexibility. Here it is only necessary to note the interesting formal analogy between the apparent contradiction in this cluster and the discrimination drawn in the third cluster, in which number 9 contrasts number with quantity. The sort of thinking that deals with quantity resembles in many ways the thinking that surrounds the concept of energy; whereas the concept of number is much more closely related to the concepts of pattern and negentropy.
The central mystery of evolution lies, of course, in the contrast between statements of the second law of thermodynamics and the observation that the new can only be plucked from the random. It was this contrast that Darwin partly resolved by his theory of natural selection.
The other two clusters in the list as given are 9 to 12 and 13 to 16. I will leave it to the reader to construct his or her phrasings of how these clusters are internally related and to create other clusters according to his/her own ways of thought.
In Chapter ... I shall continue to sketch in the background of my thesis with a listing of generalities or presuppositions. I shall, however, come closer to the central problems of thought and evolution, trying to give answers to the question: In what ways can two or more items of information or command work together or in opposition? This question with its multiple answers seems to me to be central to any theory of thought or evolution.
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.